MATLAB® 7
Data Analysis

MATLAB

‘\The MathWorks™

Accelorating the poce of engineering and science



LN

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
MATLAB® Data Analysis
© COPYRIGHT 2005-2008 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined

in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.


http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

September 2005
March 2006
September 2006
March 2007
September 2007
March 2008

Online only
Online only
Online only
Online only
Online only
Online only

New for MATLAB 7.1 (Release 14SP3)
Revised for Version 7.2 (Release 2006a)
Revised for Version 7.3 (Release 2006b)
Revised for Version 7.4 (Release 2007a)
Revised for Version 7.5 (Release 2007b)
Revised for Version 7.6 (Release 2008a)






Data Processing

Importing and ExportingData ...................... 1-2
PlottingData ............... .. ... ... 1-3
Introduction ......... ... .00 e 1-3
Example: Loading and PlottingData ................. 1-3
MissingData ............. ... iiiiiiiiiinnnnnnn. 1-6
Representing Missing Data Values ................... 1-6
Calculatingwith NaNs ............. ... i, 1-6
Removing NaNsfrom Data .......................... 1-7
Interpolating Missing Data ......................... 1-8
Inconsistent Data ............... ... . ... . ... . ... 1-9
FilteringData ............. ... ... .. i, 1-11
Introduction ......... ... .. 1-11
Filter Function ......... ... .. .. 1-11
Example: Moving Average Filter ..................... 1-12
Example: Discrete Filter ........................... 1-13
DetrendingData .................... ... .. i, 1-17
Introduction ......... .. .. 1-17
Example: Removing Linear Trends from Data .......... 1-17
DifferencingData .................................. 1-21
Descriptive Statistics ................. ... ... ... ... 1-22
Functions for Calculating Descriptive Statistics ......... 1-22

Example: Using MATLAB® Data Statistics ............ 1-25




vi

Contents

Interactive Data Exploration

2

What Is Interactive Data Exploration? ............... 2-2
Interacting with MATLAB® Data Graphs .............. 2-2
Marking Up Graphs with Data Brushing ............. 2-4
What Is Data Brushing? ............................ 2-4
HowtoBrushData .............. ... .. .. ... ... 2-6
Effects of BrushingonData ......................... 2-8
Other Data Brushing Aspects ....................... 2-11
Making Graphs Responsive with Data Linking ....... 2-13
What Is Data Linking? .............. ... ... ... 2-13
Why Use Linked Plots? ............ ... ..., 2-14
How toLink Plots .......... ... ... 2-14
How Linked Plots Behave ........................... 2-16
Linking vs. Refreshing Plots ........................ 2-19
Using Linked Plot Controls ......................... 2-21
Interacting with Graphed Data ..................... 2-24
Data Brushing with the Variable Editor ............... 2-24
Using Datatips to Explore Graphs .................... 2-25

Example — Visually Exploring Demographic Statistics ... 2-26

3

Regression Analysis

Linear Correlation ................. ... .. ... ..... 3-2
Introduction ......... ... .0 3-2
CovarianCe . .......viiiiii e e e 3-2
Correlation Coefficients ........... ..., 3-5
Linear Regression ..................... .. 3-7
Introduction ......... ... . 3-7
Residuals and Goodnessof Fit . ...................... 3-8

Fitting Data with Curve Fitting Toolbox™ Functions .... 3-8



Interactive Fitting ................................. 3-10

The Basic Fitting GUI .............. ... ... .. .. 3-10
Preparing for Basic Fitting ............. ... ... ..... 3-10
Opening the Basic Fitting GUI ...................... 3-11
Example: Using Basic Fitting GUI ................... 3-12
Programmatic Fitting .............................. 3-23
MATLAB® Functions for Polynomial Models ........... 3-23
Linear Model with Nonpolynomial Terms .............. 3-27
Multiple Regression ............co .. 3-29
Example: Programmatic Fitting ..................... 3-30

q |

Introduction ............. ... ... . .. . i i, 4-2
Time Series Objects ............. ..., 4-3
Introduction ......... ... ... e i 4-3
Time Series DataSample .................. .. ... 4-4
Example: Time Series Objects and Methods ............ 4-6
Time Series Constructor ............... .. .. 4-21
Time Series Methods ........... ... i, 4-31
Time Series Collection Constructor ................... 4-35
Time Series Collection Methods ...................... 4-39
Time SeriesTools ............ ... ... ... .. 4-41
Introduction ......... ... ... . . i 4-41
Importing and ExportingData ....................... 4-46
Plotting Time Series ...........cciiiiiieeiinnnnnnn. 4-52
Selecting Data for Analysis ......................... 4-66
Editing Data, Time, Attributes, and Events ............ 4-69
Processing and Manipulating Time Series ............. 4-78
Example: Time Series Tools ................ ... 4-79
Index

vii



viii Contents



Data Processing

Importing and Exporting Data
(p. 1-2)

Plotting Data (p. 1-3)

Missing Data (p. 1-6)
Inconsistent Data (p. 1-9)
Filtering Data (p. 1-11)
Detrending Data (p. 1-17)
Differencing Data (p. 1-21)
Descriptive Statistics (p. 1-22)

Moving data in and out of the
MATLAB® workspace

Data visualization
Handling missing values
Identifying outliers

Data smoothing

Removing linear trends
Computing finite differences

Summarizing data



l Data Processing

Importing and Exporting Data

The first step in analyzing data is to import it into the MATLAB® workspace.
The Programming Fundamentals documentation provides detailed
information about supported data formats and the functions for importing
data into the MATLAB workspace.

The easiest way to import data is to use the MATLAB Import Wizard,
described in the Programming Fundamentals documentation. With the
Import Wizard, you can import the following types of data sources:

e Text files, such as .txt and .dat

MAT-files

Spreadsheet files, such as .x1s

Graphics files, such as .gif and . jpg

Audio and video files, such as .avi and .wav

The MATLAB Import Wizard processes the data source and recognizes data
delimiters, as well as row or column headers, to facilitate the process of data
selection.

After you finish analyzing your data, you might have created new variables.
You can export these variables to a variety of file formats. The Programming
Fundamentals documentation also describes how to export data from the
MATLAB workspace.

When working with time series data, it is easiest to use the Time Series Tools
GUI to import the data and create timeseries objects. The Import Wizard
in Time Series Tools also makes it easy to import or define a time vector for
your data.



Plotting Data

Plotting Data

In this section...

“Introduction” on page 1-3

“Example: Loading and Plotting Data” on page 1-3

Introduction

After you import data into the MATLAB® workspace, it is a good idea to plot
the data so that you can explore its features. An exploratory plot of your
data enables you to identify discontinuities and potential outliers, as well as
the regions of interest.

The “Plots and Plotting Tools” section of the MATLAB Graphics documentation
fully describes the MATLAB figure window, which displays the plot, and the
types of graphs you can create in figure windows. It also discusses the various
interactive tools available for editing and customizingMATLAB graphics.

If you are working with time series data, see “Time Series Tools” on page 4-41
for detailed information about working with time series plots.

Example: Loading and Plotting Data

In this example, you perform the following tasks on the data in a
space-delimited text file:

¢ “Loading the Data” on page 1-3

e “Plotting the Data” on page 1-4

This example uses sample data in count.dat that consists of three sets
of hourly traffic counts, recorded at three different town intersections over

a 24-hour period. Each data column in the file represents data for one
intersection.

Loading the Data
Import data into the workspace using the load function:



l Data Processing

load count.dat

Loading this data creates a 24-by-3 matrix called count in the MATLAB
workspace.

You can get the size of the data matrix by

[n,p] = size(count)
n:

24
p:

3

where n represents the number of rows, and p represents the number of
columns.

Plotting the Data
Create a time vector, t, containing integers from 1 to n:

t = 1in;

Use the following commands to plot the data as a function of time, and to
annotate the plot:

plot(t,count),
legend('Location 1','Location 2','Location 3',2)
xlabel('Time'), ylabel('Vehicle Count')



Plotting Data

) Figure 1 [_ O] x|
File Edit View Insert Tools Desktop Window Help a
DS |eaMe|E 0B =0
300 T T T T
Location 1
2501 Location 2 7
Location 3
= 200
=
=]
(&1
« 150
BEY
@
= 100
a0
0

Traffic Counts at Three Intersections



l Data Processing

Missing Data

In this section...

“Representing Missing Data Values” on page 1-6
“Calculating with NaNs” on page 1-6
“Removing NaNs from Data” on page 1-7

“Interpolating Missing Data” on page 1-8

Representing Missing Data Values

Users of MATLAB® software often represent missing or unavailable data
values by the special value NaN, which stands for Not-a-Number.

The IEEE® floating-point arithmetic convention defines NaN as the result of
an undefined operation, such as 0/0.

Calculating with NaNs

When you perform calculations on a IEEE variable that contains NaNs, the NaN
values are propagated to the final result. This might render the result useless.

For example, consider a matrix containing the 3-by-3 magic square with its
center element replaced with NaN:

a = magic(3); a(2,2) = NaN

a =
8 1 6
3 NaN 7
4 9 2

Compute the sum for each column in the matrix:
sum(a)

ans =
15 NaN 15




Missing Data

Notice that the sum of the elements in the middle column is a NaN value
because that column contains a NaN.

If you do not want to have NaNs in your final results, you must remove these
values from your data. For more information, see “Removing NaNs from
Data” on page 1-7.

Removing NaNs from Data

You can use the IEEE function isnan to identify NaNs in the data, and then
remove them using the techniques in the following table.

Note You must use the function isnan to identify NaNs because, by IEEE

arithmetic convention, the logical comparison NaN == NaN always produces
0 (i.e., it never evaluates to true). Therefore, you cannot use x (x==NaN) =
[1 to remove NaNs from your data.

Code Description
i = find(~isnan(x)); Find the indices of elements in a
_ ) vector x that are not NaNs. Keep only
X = X(1)
the non-NaN elements.
X = x(~isnan(x)); Remove NaNs from a vector x.
x(isnan(x)) = []; Remove NaNs from a vector x
(alternative method).
X(any(isnan(X),2),:) = [1; Remove any rows containing NaNs

from a matrix X.

If you frequently need to remove NaNs, you might want to write a short M-file
function that you can call:

function X = exciseRows(X)
X(any(isnan(X),2),:) = [1;



l Data Processing

The following command computes the correlation coefficients of X after all
rows containing NaNs are removed:

C = corrcoef(excise(X));

For more information about correlation coefficients, see “Linear Correlation”
on page 3-2.

Interpolating Missing Data

You can use interpolation to find intermediate points in your data. The
simplest function for performing interpolation is interp1, which is a 1-D
interpolation function.

By default, the interpolation method is 'linear', which fits a straight line
between a pair of existing data points to calculate the intermediate value. The
complete set of available methods, which you can specify as arguments in the
interp1 function, includes the following:

®* 'nearest' — Nearest neighbor interpolation

e 'linear' — Linear interpolation

® 'spline' — Piecewise cubic spline interpolation

® 'pchip' or 'cubic' — Shape-preserving piecewise cubic interpolation

® 'v5cubic' — Cubic interpolation from IEEE Version 5, which does not use

'extrapolate' and uses 'spline' when X is not equally spaced

For more information about interp1, see the IEEE documentation or type
at the IEEE prompt

help interp1



Inconsistent Data

Inconsistent Data

When you examine a data plot, you might find that some points appear to
dramatically differ from the rest of the data. In some cases, it is reasonable
to consider such points outliers, or data values that do not appear to be
consistent with the rest of the data.

The following example illustrates how to remove outliers from three data sets
in the 24-by-3 matrix count. In this case, an outlier is defined as a value that
is more than three standard deviations away from the mean.

Caution Be cautious about changing data unless you are confident that
you understand the source of the problem you want to correct. Removing an
outlier has a greater effect on the standard deviation than on the mean of the
data. Deleting one such point leads to a smaller new standard deviation,
which might result in making some remaining points appear to be outliers!

% Import the sample data

load count.dat;

% Calculate the mean and the standard deviation
% of each data column in the matrix

mu = mean(count)

sigma = std(count)

The Command Window displays

mu =
32.0000 46.5417 65.5833

sigma =
25.3703 41.4057 68.0281



l Data Processing

When an outlier is considered to be more than three standard deviations away
from the mean, you can use the following syntax to determine the number of
outliers in each column of the count matrix:

[n,p] = size(count);

% Create a matrix of mean values by

% replicating the mu vector for n rows

MeanMat = repmat(mu,n,1);

% Create a matrix of standard deviation values by
% replicating the sigma vector for n rows
SigmaMat = repmat(sigma,n,1);

% Create a matrix of zeros and ones, where ones indicate
% the location of outliers

outliers = abs(count - MeanMat) > 3*SigmaMat;

% Calculate the number of outliers in each column
nout = sum(outliers)

The procedure returns the following number of outliers in each column:

nout =
1 0 0

There is one outlier in the first data column of count and none in the other
two columns.

To remove an entire row of data containing the outlier, type
count(any(outliers,2),:) = [1;
Here, any (outliers,2) returns a 1 when any of the elements in the outliers

vector is a nonzero number, and the argument 2 specifies that any works down
the second dimension of the count matrix—its columns.

1-10



Filtering Data

Filtering Data

In this section...

“Introduction” on page 1-11
“Filter Function” on page 1-11
“Example: Moving Average Filter” on page 1-12

“Example: Discrete Filter” on page 1-13

Introduction

A variety of MATLAB® IEEE® functions help you work with difference
equations and filters to shape the variations in the raw data. These functions
operate on both vectors and matrices. You can filter data to smooth out
high-frequency fluctuations or remove periodic trends of a specific frequency.

A vector input represents a single, sampled data signal (or sequence). For a
matrix input, each signal corresponds to a column in the matrix and each
data sample is a row.

Filter Function
The function
y = filter(b,a,x)

creates filtered data y by processing the data in vector x with the filter
described by vectors a and b.

The filter function is a general tapped delay-line filter, described by the
difference equation

a)y(n) =bDx(n)+b(2)x(n-1)+...+ b(Np)x(n— Ny +1)
-a)y(n-1)—-...—a(N,)y(n-N,+1)

Here, n is the index of the current sample, N, is the order of the polynomial

described by vector a, and N, is the order of the polynomial described by

1-11



l Data Processing

vector b. The output y(n) is a linear combination of current and previous
inputs, x(n) x(n — 1)..., and previous outputs, y(n — 1) y(n — 2)... .

Example: Moving Average Filter

You can smooth the data in count.dat using a moving-average filter to see the
average traffic flow over a 4-hour window (covering the current hour and the
previous 3 hours). This is represented by the following difference equation:

¥y =Lxm) + Lxtn-D+1x(n-2)+1x(n-3)

The corresponding vectors are

a=1;
b [1/4 1/4 1/4 1/4];

1 Extract the first column of count and assign it to the vector x:
x = count(:,1);

2 The 4-hour moving average of the data is calculated by
y = filter(b,a,x);

3 The filtered data, represented by the solid line in the plot, is the 4-hour
moving average of the count data. The original data is represented by
the dashed line.

1-12



Filtering Data

rwer L=

File Edit View Insert Tools Desktop ‘Window Help

Dode ZRAUDE £ (2|0EaD

1< ' : : :
— - — - Original Data . : a
Smoothed Data | i

100

80

g0

40

20

Plot of Original and Smoothed Data

Example: Discrete Filter

You use the discrete filter to shape the data by applying a transfer function to
the input signal.

Depending on your objectives, the transfer function you choose might alter
both the amplitude and the phase of the variations in the data at different
frequencies to produce either a smoother or a rougher output.

1-13



l Data Processing

1-14

Taking the z-transform of the following difference equation

aD)y(n) =b(Dx(n) +b2)x(n—1) +...+ b(Ny)x(n — Ny +1)
—-a@)yn-1)—...—alNy)y(n-N, +1)

results in the following transfer function:

b +b2)z7L + .. BN,z VoL

Y()=H(ENX(2) =
: : O W @2 a(N,)z Nett

X(2)

Here Y(2) is the z-transform of the filtered output y(n). The coefficients b and
a are unchanged by the z-transform.

In digital signal processing (DSP), it is customary to write transfer functions
as rational expressions in 271 and to order the numerator and denominator

terms in ascending powers of 21,

Consider the following transfer function:

bzl  2+3271

HGE === 1
a(z™) 1+0.2z

To apply this transfer function to the data in count.dat:
1 Load the matrix count into the workspace:

load count.dat;
2 Extract the first column and assign it to x:
x = count(:,1);

3 Enter the coefficients of the denominator ordered in ascending powers of

21 to represent 1+ 0.2z71:

a=1[10.2];



Filtering Data

4 Enter the coefficients of the numerator to represent 2+ 3271
b =[2 3];

5 Call the filter function:
y = filter(b,a,x);

6 Compare the original data and the shaped data with an overlaid plot of
the two curves:

t = 1:1length(x);

plot(t,x,'-.",t,y,'-"), grid on
legend('Original Data', 'Shaped Data',2)

As you can see from the plot, this filter primarily modifies the amplitude
of the original data.

1-15



l Data Processing

Jrgwer =lolx|

File Edit View Insert Tools Desktop ‘Window Help ]

Dode ZRAUDE £ (2|0EaD

350 T T
— - — - Original Data . i :
— Shaped Data ;

300

280

200

150

100

a0

Plot of Original and Shaped Data

1-16



Detrending Data

Detrending Data

In this section...

“Introduction” on page 1-17

“Example: Removing Linear Trends from Data” on page 1-17

Introduction

The MATLAB® function detrend subtracts the mean or a best-fit line (in
the least-squares sense) from your data. If your data contains several data
columns, each data column is detrended separately.

Removing a trend from the data enables you to focus your analysis on the
fluctuations in the data about the trend. A linear trend typically indicates a
systematic increase or decrease in the data. This might be caused by sensor
drift, for example.

You must decide whether it makes sense to remove trend effects in the data
based on the objectives of your analysis.

Example: Removing Linear Trends from Data

This example shows how to remove a linear trend from daily closing stock
prices to emphasize the price fluctuations about the overall increase. This
data is available in the Financial Toolbox™ predict_ret_data.mat file.

You can follow along with the steps in this example to perform the following
tasks:

¢ “Loading and Plotting Data” on page 1-18
¢ “Detrending Data and Plotting Results” on page 1-19

1-17



l Data Processing

1-18

Loading and Plotting Data

1 Load the sample data:

load predict_ret_data.mat

This adds the variable sdata to the workspace, which contains the daily
stock prices.

2 View the contents of the column vector sdata:

sdata

The last data value is a NaN, which must be removed before detrending
the data.

3 Identify and remove the NaN value from sdata:

sdata(any(isnan(sdata),2),:) = []

For more information about removing NaNs, see “Removing NaNs from
Data” on page 1-7.

4 Plot the data:

plot(sdata, '+"')

legend('Original Data',1);
xlabel('Time (days)');
ylabel('Stock Price (dollars)');



Detrending Data

<) Figure 1 [_ O] x]
File Edit View Insert Tools Deskiop Window Help ]
RS LK aan®|(E 0B =0
124
. #
12 £t # -
ﬁ ijl- +:§ﬁj§_
g s F#s ¥ |
E -
- i ¥
2 t o+
o
2 Hip
g +
i 145 :#{: E
G F "
10 t+ + 1
k.
95 1 1 1 1 1
0 a0 100 150 200 230 300
Tirne (days)

Daily Closing Stock Prices
Notice the systematic increase in the stock prices when this data was

collected.

Detrending Data and Plotting Results

1 Remove a best-fit line (in the least-squares sense) from sdata and save the
results to a new variable, detrend_sdata:

detrend_sdata=detrend(sdata);

2 Plot the detrended data in a new MATLAB Figure window:

figure

plot(detrend_sdata,'-")

legend('Detrended Data',?2)

xlabel('Time (days)');

ylabel('Detrended Stock Price (dollars)');

1-19



l Data Processing

<)\ Figure 2 [_ O] x|

File Edit View Insert Tools Deskiop Window Help £l

DEeEE kAN 0B 5O

Detrended Data | |

0.8 |

06
04r
02r

0z
0.4r

Detrended Stock Price (dallars)
=

RN
08

1] 50 100 150 200 250 300
Tirne (days)

Stock Prices with the Removed Linear Trend

Notice that the data is now centered about 0 and the linear drift is removed
from the data.

1-20



Differencing Data

Differencing Data

Three MATLAB® functions perform finite difference calculations.

Function Description
del2 Discrete Laplacian of a matrix
diff Differences between successive elements of a vector;

numerical partial derivatives of a vector

gradient Numerical partial derivatives of a matrix

The diff function computes the difference between successive elements in a
numeric vector. That is, diff (X) is [X(2)-X(1) X(3)-X(2)...X(n)-X(n-1)7].
You might want to perform this operation on your data if you are more
interested in analyzing the changes in the values, rather than the absolute
values.

For a vector A,

A=1[9 -2301 5 4];
diff(A)

ans =
-11 5 -3 1 4 -1

Besides computing the first difference, you can use diff to determine certain
characteristics of vectors. For example, you can use diff to determine
whether the vector values are monotonically increasing or decreasing, or
whether a vector has equally spaced elements.

The following table provides examples for using diff with a vector x.

Test Description

any (diff(x)==0) Tests whether there are any repeated elements
in X

all(diff(x)>0) Tests whether the values are monotonically
increasing

all(diff(diff(x))==0) | Tests for equally spaced vector elements

1-21



l Data Processing

Descriptive Statistics

1-22

In this section...

“Functions for Calculating Descriptive Statistics” on page 1-22
“Example: Using MATLAB® Data Statistics” on page 1-25

If you need more advanced statistics functionality, you might want to use the
Statistics Toolbox™ software. For more information see the Statistics Toolbox
documentation.

Functions for Calculating Descriptive Statistics

You can use the following MATLAB® functions to calculate the descriptive
statistics for your data.

Note For matrix data, descriptive statistics for each column are calculated
independently.

Statistics Function Summary

Function Description

max Maximum value

mean Average or mean value

median Median value

min Smallest value

mode Most frequent value

std Standard deviation

var Variance, which measures the spread or dispersion of the
values




Descriptive Statistics

The following examples apply MATLAB functions to calculate descriptive
statistics:

e “Example 1 — Calculating Maximum, Mean, and Standard Deviation”
on page 1-23

e “Example 2 — Subtracting the Mean” on page 1-25

Example 1 — Calculating Maximum, Mean, and Standard
Deviation

This example shows how to use MATLAB functions to calculate the maximum,
mean, and standard deviation values for a 24-by-3 matrix called count.
MATLAB computes these statistics independently for each column in the
matrix.

[

% Load the sample data
load count.dat

% Find the maximum value in each column

mx = max(count)

% Calculate the mean of each column

mu = mean(count)

% Calculate the standard deviation of each column

sigma = std(count)

The results are

mx =
114 145 257
mu =
32.0000 46.5417 65.5833
sigma =
25.3703 41.4057 68.0281

1-23



l Data Processing

1-24

To get the row numbers where the maximum data values occur in each data
column, you can specify a second output parameter indx to return the row
index. For example:

[mx,indx] = max(count)
These results are

mx =
114 145 257

indx =
20 20 20

Here, the variable mx is a row vector that contains the maximum value in each
of the three data columns. The variable indx contains the row indices in each
column that correspond to the maximum values.

To find the minimum value in the entire count matrix, you can reshape this
24-by-3 matrix into a 72-by-1 column vector by using the syntax count(:).
Then, to find the minimum value in the single column, you can use the
following syntax:

min(count(:))

ans =



Descriptive Statistics

Example 2 — Subtracting the Mean

You can subtract the mean from each column of the matrix by using the
following syntax:

% Get the size of the count matrix

[n,p] = size(count)

% Compute the mean of each column

mu = mean(count)

% Create a matrix of mean values by

% replicating the mu vector for n rows
MeanMat = repmat(mu,n,1)

% Subtract the column mean from each element
% in that column

X = count - MeanMat

Note Subtracting the mean from the data is also called detrending. For
more information about removing the mean or the best-fit line from the data,
see “Detrending Data” on page 1-17.

Example: Using MATLAB® Data Statistics

The Data Statistics dialog box helps you calculate and plot descriptive
statistics with the data. This example shows how to use MATLAB Data
Statistics to calculate and plot statistics for a 24-by-3 matrix, called count.

This section contains the following topics:

e “Calculating and Plotting Descriptive Statistics” on page 1-26
e “Formatting Data Statistics on Plots” on page 1-29

¢ “Saving Statistics to the MATLAB® Workspace” on page 1-31
® “Generating an M-file” on page 1-32

Note MATLAB Data Statistics is available only for 2-D plots.

1-25



l Data Processing

Calculating and Plotting Descriptive Statistics

1 Load and plot the data:

load count.dat

[n,p] = size(count);
% Define the x-values
t =1:n;

% Plot the data and annotate the graph
plot(t,count)

legend('Location 1','Location 2','Location 3',2)

xlabel('Time'), ylabel('Vehicle Count')

<) Figure 1 =] B3
k-]

File Edit View Insert Tools Desktop Window Help

DedaE kRO ®|(E OB O

300 T
Location 1
250 Location 2 7
Lacation 3
= 200
=
o
=
w 150F
=
i
= 100
a0+
0

Note The legend contains the name of each data set, as specified by the
legend function: Location 1, Location 2, and Location 3. A data set
refers to each column of data in the array you plotted. If you do not name
the data sets, default names are assigned: data 1, data 2, and so on.

1-26



Descriptive Statistics

2 In the Figure window, select Tools > Data Statistics .

This opens the Data Statistics dialog box, which displays descriptive
statistics for the X- and Y-data of the Location 1 data set.

«): Data Statistics - 1
Statistins for | Location 1 -]
Check to plot statistics on figure:
¥ Y
Fiif 1 7
P 24| 14 [
mean 125 a2
triediam 125 [ 235
Hrode 1 1
std 7.071 [ 2537 [
range 23 107
Save to warkspace.. | Help | Close |

Note The Data Statistics GUI calculates the range, which is the difference
between the minimum and maximum values in the selected data set. The
Data Statistics GUI does not display the range on the plot.

1-27



l Data Processing

3 Select a different data set in the Statistics for list: Location 2.

This displays the statistics for the X and Y data of the Location 2 data set.

«): Data Statistics - 1
Stetistics for | Locstion 2 -]
Check to plot gass3iont
Location 3
ity 1 g™
s 24 [ 145 [
HEah 125 [ a6.54 [
mecian 125 a6
miocle 1 |_ ] I_
st 7.071 T 441 T
range 23 136
Save to workspace.. | Help | Close |

4 Select the check box for each statistic you want to display on the plot.

For example, to plot the mean of Location 2, select the mean check box
in the Y column.

1-28

«): Data Statistics - 1
Statistics for | Location 2 -]
Check to plot statistics on figure:
b i
il 1 all”
Frii: 24 [ 185 [
mean 125 [ 46.54 dvi:
median 125 %6 [ b
trocle 1 all™
std 707 [ 4141 [T
range 23 136
Save to warkspace.. | Help Close |




Descriptive Statistics

This plots a horizontal line to represent the mean of Location 2 and
updates the plot legend to include this statistic.

<) Figure 1 =] B3

File Edit Wiew Insert Tools Desktop ‘Window Help £

D& K aam®|(E| 0B =50

300 ;
|'B h I'[I . |I.[h " Location 1
T gend incluces 250 | Location 2 |
statistical annotations you —-— ymean
acd to the phf. _ 200t Location 3
5
[=]
[
@ 180}
g
=
= 00t
Mean of Location 2 ————— 50+
] 1 1 - | |
0 5 10 15 20 25

Tirme (Hours)

Formatting Data Statistics on Plots

The Data Statistics GUI uses colors and line styles to distinguish statistics
from the data on the plot. This portion of the example shows how to customize
the display of descriptive statistics on a plot, such as the color, line width,
line style, or marker.

Note Do not edit display properties of statistics until you finish plotting all
the statistics with the data. If you add or remove statistics after editing plot
properties, the changes to plot properties are lost.

To modify the display of data statistics on a plot:

1 In the MATLAB Figure window, click the [3 (Edit Plot) button in the
toolbar.

This enables plot editing.

1-29



l Data Processing

1-30

2 Double-click the statistic on the plot for which you want to edit display
properties. For example, double-click the horizontal line representing the
mean of Location 2.

This opens the Property Editor below the MATLAB Figure window, where
you can modify the appearance of the line used to represent this statistic.

<) Figure 1 [_ (O] =]
File Edit Wiew Insert Tools Deskiop Window Help N
DEE&G K |RQaM®(E 0B 0O
300 T T T T
Location 1
250k Location 2 i
— - = ¥y mean
_ oml Location 3 |
=
=
o
O
w 1501 1
g
=
(i)
> oot .
a0 - al
0

1} 5 10 14 20 25

Time (Hours)
Property Editor - Constantlineseries x
Line: I - LI ID.S LI i '| hore Properties... |

Marker: Inone LI IB,U :I é v| é. v|

3 In the Property Editor, specify the Line and Marker styles, sizes, and

colors.

Tip Alternatively, right-click the statistic on the plot, and select an option
from the shortcut menu.




Descriptive Statistics

Saving Statistics to the MATLAB® Workspace

This portion of the example shows how to save statistics in the Data Statistics
GUI to the MATLAB workspace.

Note When your plot contains multiple data sets, you must save statistics
for each data set individually. To display statistics for a different data set,
select it from the Statistics for list in the Data Statistics GUI.

1 In the Data Statistics dialog box, click the Save to workspace button.

2 In the Save Statistics to Workspace dialog box, specify to save statistics
for either X data, Y data, or both. Then, enter the corresponding variable
names.

In this example, save only the Y data. Enter the variable name as
Loc2countstats.

<)} Save Statistics to Workspace !EI

[~ Save X stats to a MATLAE struct named: Facmimestats
[¥ Save 'Y stats to s MATLAE struct named: Foczcoun’[stats

OK Cancel |

3 Click OK.

This saves the descriptive statistics to a structure. The new variable is
added to the MATLAB workspace.

1-31



l Data Processing

To view the new structure variable, type the variable name at the MATLAB

prompt:
Loc2countstats
Loc2countstats =
min: 9
max: 145
mean: 46.5417
median: 36
mode: 9
std: 41.4057
range: 136

Generating an M-file

This portion of the example shows how to generate an M-file that reproduces
the format of the plot and the plotted statistics with new data.

1-32

In the Figure window, select File > Generate M-File.

This creates a function M-file and displays it in the MATLAB Editor. The
code in the M-file shows you how to programmatically reproduce what you
did interactively with the Data Statistics GUI and the Property Editor.

Change the name of the function on the first line of the M-file from
createfigure to something more specific, like countplot. Save the file to
your current directory with the file name countplot.m.

Generate some new, random count data:

randcount = 300*rand(24,3);

Reproduce the plot with the new data and the recomputed statistics:

countplot(t,randcount)



Descriptive Statistics

J Figure 2 =[O ]
Fle Edit View Insert Tools Deskifop “Window Help £
W& haars | nE =0
300 . . . .
Location 1
N 250y Location 2
S 200 —-— - ymean
S Location 3
8 160 T T R | J.‘qu_
T 100}
50+
O ! !
0 5 10
Time

1-33



l Data Processing

1-34



Interactive Data

Exploration

What Is Interactive Data
Exploration? (p. 2-2)

Marking Up Graphs with Data
Brushing (p. 2-4)

Making Graphs Responsive with
Data Linking (p. 2-13)

Interacting with Graphed Data
(p. 2-24)

Looking for patterns and anomalies
in data sets

Interactively highlighting
observations of interest in graphs

Connecting X, Y, and Z graph data to
workspace variables

Using datatips and the Variable
Editor to inspect graphed data



2 Interactive Data Exploration

What Is Interactive Data Exploration?

Interacting with MATLAB® Data Graphs

The MATLAB® data analysis and graphics tools for visual data exploration
leverage its Handle Graphics® capabilities. In addition to the presentation
techniques described in the following section, they include:

Highlighting and editing observations on graphs with data brushing

Connecting data graphs with variables with data linking

Describing observations on graphs with datatips

Finding, adding, removing, and changing data values with the Variable
Editor

Used alone or together, these tools help you to perceive trends, noise, and
relationships in data sets, and understand aspects of the phenomena you
model. Ways to use them are presented in the following sections. To learn
more, you can also view a video tutorial that describes these and related
features.

Understanding Data Using Graphic Presentations

Finding patterns in numbers is a mathematical and an intuitive undertaking.
When people collect data to analyze, they often want to see how models,
variables, and constants explain hypotheses. Sometimes they see by
scanning tables or sets of statistics, other times by contemplating

graphical representations of models and data. An analyst’s powers of
pattern recognition can lead to insights into data’s distribution, outliers,
curvilinearity, associations between variables, goodness-of-fit to models, and
more. Computers amplify those powers greatly.

Graphically exploring digital data interactively generally requires:

® Data displays for charts, graphs, and maps

® A graphical user interface (GUI) capable of directly manipulating the
displays



What Is Interactive Data Exploration?

Software that categorizes selected data performs operations on the
categories, and then updates or creates new data displays

This approach to understanding is often called exploratory data analysis
(EDA), a term coined during the infancy of computer graphics in the 1970s
and generally attributed to statistician John Tukey (who also invented the box
plot). EDA complements statistical methods and tools to help analysts check
hypotheses and validate models. An EDA GUI usually lets analysts divide
observations of variables on data plots into subsets using mouse gestures, and
then analyze further or eliminate selected observations.

Part of EDA is simply looking at data graphics with an informed eye to
observe patterns or lack of them. What makes EDA especially powerful,
however, are interactive tools that let analysts probe, drill down, map, and
spin data sets around, and select observations and trace them through plots,
tables, and models.

Well before digital tool sets like the MATLAB environment developed, curious
quantitative types plotted graphs, maps, and other data diagrams to trigger
insights into what their collections of numbers might mean. If you are curious
about what data might mean and like to reflect on data graphics, MATLAB
provides many options:

Plotting data — scatter, line, area, bar, histogram and other types of graphs

Plotting thematic maps to show spatial relationships of point, lines and
area data

Plotting N-D point, vector, contour, surface, and volume shapes
Overlaying other variables on points, lines, and surfaces (e.g. texture-maps)
Rendering portions of a 3-D display with transparency

Animating any of the above

All of these options generate static or dynamic displays that may reveal
meaning in data. In many environments, however, users cannot interact with
them; they can only change data or parameters and redisplay the same or
different data graphics. MATLAB tools enable users to directly manipulate
data displays to explore correlations and anomalies in data sets, as the
following sections explain.



2 Interactive Data Exploration

Marking Up Graphs with Data Brushing

In this section...
“What Is Data Brushing?” on page 2-4

“How to Brush Data” on page 2-6
“Effects of Brushing on Data” on page 2-8
“Other Data Brushing Aspects” on page 2-11

What Is Data Brushing?

When you brush data, you manually select observations on an interactive data
display in the course of assessing validity, testing hypotheses, or segregating
observations for further processing. You can brush data on 2-D graphs, 3-D
graphs, and surfaces. Most of the MATLAB® high-level plotting functions
allow you to brush on their displays. For a list of restrictions, see “Plot
Types You Cannot Brush” in the brush function reference page, which also
illustrates the types of graphs you can brush.

Note Data brushing is a MATLAB figure interactive mode like zooming,
panning or plot editing. Unlike plot edit mode, in which you can affect a
graph’s appearance and compose annotations but cannot manipulate its
data, in data brushing mode you can select, remove, and replace individual
data values.

Data brushing mode applies to an entire figure and all axes within it that
contain brushable data.

Activate data brushing in any of these ways:

s |

Click the Data Brushing tool button on the figure toolbar.
Click the Data Brushing tool button in the Variable Editor toolbar.

Select Brush from the figure Tools menu.

Call the brush function.



Marking Up Graphs with Data Brushing

By default, data brushing is off. The Data Brushing tool button contains
two parts and has a dual role:

® When you click the tool icon on its left side, it toggles data brushing mode
on and off.

® When you click the down arrow on its right side, it displays a drop-down
menu for choosing a color for brushing data.

You can set the color with the brush function as well; it accepts colorspec
names and RGB triplets. For example:

brush magenta
brush([.1 .3 .5])

The figures below show a scatter plot before and after brushing some outlying
observations; the left-hand plot displays the Data Brushing tool palette for
choosing a brush color. The information bar informs you that data brushing
and linking are available for figures and contains hyperlinks to this page and
other documentation. Once you dismiss this information bar by clicking the
X on its right-hand side, it only reappears on subsequent plots if you select
Show linking and brushing message bar in the MATLAB Preferences
Confirmation Dialogs pane.



2 Interactive Data Exploration

_inix] ~laix

Fle Edit View Insert Tools Desktop Window Help u File Edt View Insert Tools Desktop Window Help u

O de R GeEL20Eam Dode [ s[RR09E«£- 2|02 aO

@ nNate new toolbar buttons: data brushing & iniczd | I (] L C1 0 I N x @ not= new toolbar buttons: data brushing & linked plots &% 58, Plav video x
150 o 150 .

100

count(; 2)

501

100 F

count(: 2)

50t o

40

120 0 20 40 60 80 100 120
count(:.1)

100

60 80
count(:, 1)

2-6

How to Brush Data
To brush observations on graphs and surface plots,

1 To enter brushing mode, select the Data Brushing tool; click the icon on
the left side to activate the mode, and optionally select a brushing color by
clicking the arrow on its right side.

2 Drag a selection rectangle to highlight observations on a graph in the
current brushing color.
Instead of dragging out a rectangle, you can click any observation to select
it. Double-clicking selects all the observations in a series.

3 To add other observations to the highlighted set, hold down the Shift key
and brush them.

4 Shift+clicking or Shift+dragging highlighted observations eliminates their
highlighting and removes them from the selection set; this lets you select
any set of observations.

Brushed observations remain brushed even in other modes (pan, zoom, edit)
until you deselect them by brushing an empty area or by selecting Clear all



Marking Up Graphs with Data Brushing

brushing from the context menu. You can add and remove datatips to a
brushed plot without disturbing its brushing.

Once you have brushed observations from one or more graphed variables, you
can perform several tasks with the brushing set, either from the Tools menu
or by right-clicking any brushed observation:

® Remove all brushed observations from the plot.

* Remove all unbrushed observations from the plot.

® Replace the brushed observations with NaN or constant values.

® Copy the brushed data values to the clipboard.

¢ Paste the brushed data values to the command window

® Create a variable to hold the brushed data values

® (Clear brushing marks from the plot (context menu only)

The two following figures show a lineseries plot of a variable, along with
constant lines showing its mean and two standard deviations. On the left, the
user is brushing observations that lie beyond two standard deviations from
the mean. On the right, the user has eliminated these extreme values by
selecting Brushing > Remove brushed from the Tools (or context) menu.

The plot immediately redisplays with two fewer x- and y-values. The original
workspace variable, however, remains unchanged.

Percent Below Poverty Level Percent Below Poverty Lavel
30 i i . . . ] i - 30 ' ' ] i i ] i -

25 1 25

20 » B 20
T T T T T T T T Uz 1= = - e

AR TR
E\AJ\/ MV \M”WHU VA\J wﬁ\«' \/ S\AW U”V\JUVWHUW W y




2 Interactive Data Exploration

Before removing the extreme values, you can save them as a new workspace
variable with Tools > Brushing > Create new variable. Doing this opens a
dialog box for you to declare a variable name.

a o UL &
x

Variable name: I extremevals| - |

kK ,\J Cancel |
LaX

Typing extremevals to name the variable and pressing OK to dismiss the
dialog produces

extremevals =
48.0000 25.7000
50.0000 19.5000

The new variable contains one row per observation selected. The first column
contains the x-values and the second column contains the y-values, copied from
the lineseries’ XData and YData. In graphs where multiple series are brushed,
the Create New Variable dialog box helps you identify what series the new
variable should represent, allowing you to select and name one at a time.

Effects of Brushing on Data

Brushing simply highlights data points in a graph, without affecting data on
which the plot is based. If you remove brushed or unbrushed observations

or replace them with NaN values, the change applies to the XData, YData,
and possibly ZData properties of the plot itself, but not to variables in the
workspace. You can undo such changes. However, if you replot a brushed
graph using the same workspace variables, not only do its brushing marks go
away, all removed or replaced values are restored and you cannot undo it. If
you want brushing to affect the underlying workspace data, you must link the
plot to the variables it displays. See “Making Graphs Responsive with Data
Linking” on page 2-13 for more information.



Marking Up Graphs with Data Brushing

Brushed 3-D Plots

When an axes displays three-dimensional graphics, brushing defines a region
of interest (ROI) as an unbounded rectangular prism. The central axis of the
prism is a line perpendicular to the plane of the screen. Opposite corners of
the prism pass through points defined by the CurrentPoint associated with
the initial mouse click and the value of CurrentPoint during the drag. All
vertices lying within the rectangular prism ROI highlight as you brush them,
even those that are hidden from view.

The next figure contains two views of a brushed ROI on a peaks surfaceplot.
On the left plot, only the cross-section of the rectangular prism is visible (the
brown rectangle) because the central axis of the prism is perpendicular to the
viewing plane. When the viewpoint rotates by about 90 degrees clockwise
(right-hand plot), you see that the prism extends along the initial axis of view
and that the brushed region conforms to the surface.

Brushed Multiple Plots

When the same x-, y- or z-variable appears in several plots, brushing
observations in one plot highlights the related ones in the others whenever
the plots are linked. If the brushed variables are open in the Variable Editor,
rows of data containing the brushed observations are highlighted in the
brushing color there as well. For more information, see “Data Brushing with
the Variable Editor” on page 2-24.



2 Interactive Data Exploration

2-10

Note You can see brushed observations highlighted in the Variable Editor if
you activate the Data Brushing tool on its toolbar. In data brushing mode,
you can directly brush data values in the Variable Editor to highlight them on
plots. In addition, if you change any values in the Variable Editor, all linked
graphs on which they appear reflect those changes.

Organizing Plots for Brushing. Data brushing usually involves creating
multiple views of related variables on graphs and in tables. Just as computer
users organize their virtual desktops in many different ways, you can use
various strategies for viewing sets of plots:

Multiple overlapping figure windows

Tiled figure windows

Tabbed figure windows

Subplots presenting multiple views

When MATLAB figures are created, by default, they appear as separate
windows. Many users keep them as such, arranging, overlapping, hiding and
showing them as their work requires. Any figure, however, can dock inside

a figure group, which itself can float or dock in the MATLAB desktop. Once
docked in a figure group, you can float and overlap the individual plots, tile
them in various arrangements, or use tabs to show and hide them.

Note For more in formation on managing figure windows, see “Floating
(Cascaded) Figures in Desktop Example” in the MATLAB Desktop
documentation. “Managing Plotting Tools” in the MATLAB Graphics
documentation provides related details.

Another way of organizing plots is to arrange them as subplots within a single
figure window, as illustrated in the example for “Linking vs. Refreshing Plots”
on page 2-19. You create and organize subplots with the subplot function, for
which there is no GUI as there is for figure groups. Subplots are useful when
you have an idea of how many graphs you want to work with simultaneously
and how you want to arrange them (they do not need to be all the same size).



Marking Up Graphs with Data Brushing

Note You can easily set up M-files to create subplots; see “Setting Up
Figures” in the MATLAB Graphics documentation.

Other Data Brushing Aspects

Not all types of graphs can be brushed, and each type that you can brush

is marked up in a particular way. To be brushable, a graphic object must
have XDataSource, YDataSource, and where applicable, ZDataSource
properties. The one exception is the patch objects produced by the hist
function, which are brushable due to the special handling they receive. In
order to brush a histogram, you must put the figure containing it into a linked
state. For related information, see “Plot Objects” in the MATLAB Graphics
documentation.

The brush function reference page explains how to apply brushing to different
graph types, describes how to use different mouse gestures for brushing, and
lists graph types that you can and cannot brush. See the following sections:

* “Types of Plots You Can Brush”
e “Plot Types You Cannot Brush”

® “Mouse Gestures for Data Brushing”

Keep in mind that data brushing is a mode that operates on entire figures,
like zoom, pan, or other modes. This means that some figures can be in data
brushing mode at the same time other figures are in other modes. When you
dock multiple figures into a figure group, there is only one toolbar, which
reflects the state or mode of whatever figure docked in the group you happen
to select. Thus, even when docked, some graphs may be in data brushing
mode while others are not.

If an axes contains a plot type that cannot be brushed, you can select the
figure’s Data Brushing tool and trace out a rectangle by dragging it, but no
brush marks appear. The following figure group contains a histogram and a
scatter plot that describe intensity statistics for the image displayed in the
middle. Although the graphs are brushable, the image itself is not. Here the
graphs are shown brushed, after having linked to their data sources.

2-11



2 Interactive Data Exploration

_iBix
Fil= Edit Wiew Insert Tools Debug Desktop Window Help ~ |
Ddde s RA0DEL-2|0E]|aDO BEDeen
“ Figurel = | Figure 2 || Figure 3 x |
o x B
x10* = S 3 g -
2= | E5 = :
50 <
1 2 S
1 100 o
B of
1 a.;u "
0.5 150 -
o~
&a
0 200 ov
0 1 2 3 100 200 300 0 50 100

When you lay out graphs in subplots within a single figure and enter data
brushing mode, all the subplot axes become brushable as long as the graphic
objects they contain are brushable. If the figure is also in a linked state,
brushing one subplot marks any other in the figure that shares a data source
with it. Although this also happens when separate figures are linked and
brushed, you can prevent individual figures from being brushed by unlinking
them from data sources.

2-12



Making Graphs Responsive with Data Linking

Making Graphs Responsive with Data Linking

In this section...

“What Is Data Linking?” on page 2-13
“Why Use Linked Plots?” on page 2-14
“How to Link Plots” on page 2-14

“How Linked Plots Behave” on page 2-16

“Linking vs. Refreshing Plots” on page 2-19
“Using Linked Plot Controls” on page 2-21

What Is Data Linking?

Linked plots are graphs in figure windows that visibly respond to changes in
the current workspace variables they display and vice versa. This differs
from the default behavior of graphs, which contain copies of variables they
represent (their XData/YData/ZData) and must be explicitly replotted in order
to update them when a displayed variable changes. For example, if variable y
in the workspace appears in a linked plot and y is modified in the Command
Window, the graphic representation of y in the linked plot updates within
half a second to reflect the change.

The concept of linked data is familiar to users of the Variable Editor. When
variables change or go out of scope, the Variable Editor updates itself. It
continuously updates variables in the workspace when you add, change, or
delete values. The Variable Editor works the same way with linked plots.

Linking graphs to workspace data has long been possible using the plot
selectors in the Workspace Browser, the Variable Editor, the Plot Catalog, and
MATLAB® function calls. For example, you can use code such as

X = 0:.1:8*pi;
y = sin(x);
h = plot(x,y)

set(h, 'XDataSource', 'x"');
set(h, 'YDataSource','y');
y = sin(x."3);
refreshdata

2-13



2 Interactive Data Exploration

2-14

to manually update the line plot of y versus x when y changes in the
workspace. For more information on this manual technique, see the
refreshdata reference page and “Linking Graphs to Variables — Data
Source Properties” in the MATLAB Graphics documentation. Prior to data
linking, users needed to explicitly update plots to reflect changes in workspace
variables, as illustrated in “Linking vs. Refreshing Plots” on page 2-19.

Why Use Linked Plots?

If the same variable appears in plots in multiple figures, you can link any of
the plots to the variable. You can use linked plots in concert with “Marking
Up Graphs with Data Brushing” on page 2-4, but also on their own. Linking
plots lets you

e Make graphs respond to changes in variables in the base workspace or
within a function

e Make graphs respond when you change variables in the Variable Editor
and Command Line

® Modify variables through data brushing that affect different graphical
representations of them at once

¢ (Create graphical “watch windows” for debugging purposes
Watch windows are useful if you program in the MATLAB language. For
example, when refining a data processing algorithm to step through your

code, you can see graphs respond to changes in variables as a function
executes statements.

How to Link Plots

When you create a figure, by default, data linking is off. You can put a figure
into a linked state in any of three ways:

= |

¢ (Click the Data Linking tool button on the figure toolbar.
¢ Select Link from the figure Tools menu.

e (Call the 1inkdata MATLAB function, e.g., linkdata on.



Making Graphs Responsive with Data Linking

¢ To disable data linking, click the Data Linking tool button, deselect
Tools > Link, or type linkdata off.

Once a figure is linked, its appearance changes; an information bar, called
the Linked Plot information bar, appears beneath the figure toolbar to reflect
its new linked state. It identifies all linked variables and gives you an
opportunity to unlink or relink any of them. The information bar looks like
this.

() Linked varisbles/expressions: v{:,1) vs. x Edit. .. —

The linked plot information bar identifies a figure as being linked and
displays relationships between graphic objects and the workspace variables
they represent. Click the circular down arrow icon on its left side to display
a legend that identifies the data source for each graphic object in a graph,
as in the following example.

| Fowes ~=loix|

File Edit View Insert Tools Desktop Window Help

Dode | h|ARAOBEL- 2|02 ad

-:::'::i' Linked variables/expressions: u,popdatal:, 20), popdatal:, 19), popdatal:, 18), popdatal:, 17. .. dit. .. -~
i rmiwiur m Lovimtary f vmtARAME A A ¥ e franiin Levesimn

& u %

—— popdatal:,20)

—— popdatal:, 19)
—— popdatal:, 18)
— popdatal:, 17)

— popdatal:, 16)

. Vf V | / \
R |
Dropping down the linked plot legend is useful when many data sources are

linked to a graph at once. Like legends created with the legend function, it
identifies graph components with variable expressions.

in Living

2-15



2 Interactive Data Exploration

How Linked Plots Behave

Once linked to its data source(s), a figure acts as if you called the MATLAB
function refreshdata every time a workspace variable it displays changes.
That is, any series or group graphic objects contained in the figure can update
its own XData, YData, or ZData properties and redraw itself when one of its
data sources is modified. If the linked state is set to 'off' using the 1inkdata
function, by deselecting the Data Linking toolbar button, or by deselecting
Link on the figure’s Tools menu, automatic refreshing stops.

When you turn linking on for a figure, the linking mechanism can usually
identify the data sources for displayed graphs, but sometimes there is
ambiguity about what variable or range of a variable has been plotted. At
such times, the Linked Plot information bar informs you that graphics have
no data sources and gives you a chance to identify them, as you can see here.

/M No graphics have data sources. Cannat link plot: Fix it

Click fix it to open a dialog box where you can specify the variables and
ranges of any or all plotted variables, shown in the following image for a
3-D scatter plot.

2-16



Making Graphs Responsive with Data Linking

—ioix
File Edit View Insert Tools Desktop Window Help |
o i o
NG Hde b AAUDE L |R0E |80
& Ma graphics have data sources, Cannot link plok: Fixt't -

o s
-1 : ! -
100 ' i N
80 J_---"" N
i e
= (R . Lo [ (e
] 4= H ' el ' - ' -
= AN -7 i (AT ! ! .. '
=l . ). Specify Data Source Properties x|
hd
% Edit table ko specify data source for graphics.
o
o DisplayMame ¥DakaSource YDaktaSource ZDakaSource
© [ [ [ |
K Apply Cancel
PetBlackUrb 0 0 :
ctBlackUrban PctWhiteUrban

In the Specify Data Source Properties dialog box, choose a source for XData,
YData, and/or ZData from drop-down menus or type an expression. For 2-D
plots, usually you must specify at least YData and for 3-D plots, ZData. In the
next image, the expressions popdata(1:end-1,17), popdata(i:end-1,18),
and popdata(1:end-1,19) are typed in, in order to identify the appropriate
columns and to exclude the final row of the data matrix from the plot. The
DisplayName property (used by the legend function) is also set to 'Pct

Urban'.

2-17



2 Interactive Data Exploration

) Figure 1 =]
File Edit View Insert Tools Desktop Window Help |
o i o
N de |k [RXODE L -2 a0
& Ma graphics have data sources, Cannot link plok: fix it -
.-'l"r_ed_ E H‘H.
100 -~ i 285 S
: ey O o
TR by
801 ,_.:.n‘?" TS R
g enl .-V : .- b P :
E ) Specify Data Source Properties 1'
m
2 Edit table to specify data source For graphics.
o
e DisplayMame ¥DataSource YDataSaurce ZDataSource
' |popdata(:,18) vs. p... | popdata(:,17) popdatal:, 18) LI LI
popdatal:,12) -
popdatal:, 13)
popdatal:, 14)
popdatal:, 15) J
popdatal;, 16)
OK | __|popdata(:,17) I
0 E= popdatal;, 18) =
0 .
PetBlackUrban PetWhit A S~ |

Tip Save time by using the drop-down lists to select data sources unless you
need to specify ranges of data or other expressions.

Note There may not be any data sources for variables in a graph. For
example, plot(randn(100,1)) produces a line graph that has neither an
XDataSource (the x-values are implicit) nor a YDataSource (no variable for
y-values exists). Therefore, while you can brush such graphs, they cannot link
to other plots, because linking requires workspace data.

2-18



Making Graphs Responsive with Data Linking

Linking vs. Refreshing Plots

Besides the linked plots feature, other MATLAB mechanisms connect graphic
objects to data sources (workspace variables). The main techniques are:

¢ Directly update the XData/YData/ZData properties of a graph.

® Set a graph’s XDataSource/YDataSource/ZDataSource and indirectly
update XData/YData/ZData by calling refreshdata.

For an example of using these techniques to animate graphs, see “Updating
Plot Object Axis and Color Data” in the MATLAB Graphics documentation.
That section explains that data linking is not a method intended for animating
data graphs.

Linking plots automates these tasks and keeps graphs continuously in sync
with the variables they depict, making it the easiest technique to use. Data
sources must still exist in the workspace, but you do not need to explicitly
declare them for linked plots unless some ambiguity exists. The following code
examples iteratively approximate pi, and illustrate the difference between
declaring and refreshing data sources yourself and letting the 1inkdata
function handle it for you.

2-19



2 Interactive Data Exploration

Updating a Graph with refreshdata

Updating a Graph with linkdata

x1= [1 2];

y1 = [4 4];
ntimes = 100;
denom = 1;

k = -1;
subplot(1,2,1)

hp1 = plot(x1,y1);

x2= [1 2];

y2 = [4 4];
ntimes = 100;
denom = 1;

k = -1;
subplot(1,2,2)
plot(x2,y2);

xlabel('Updated with REFRESHDATA')

ylabel('\pi')

set(gca, 'X1im',[0 ntimes],...
'Ylim',[2.5 4])

set(hpt1,’XDataSource’, ’x1°)

set(hpt, ’YDataSource’, ’y1’)

xlabel('Updated with LINKDATA')

ylabel('\pi')

set(gca, 'X1im',[0 ntimes],...
'Ylim',[2.5 4])

linkdata on

for t = 3:ntimes

for t = 3:intimes denom = denom + 2;
denom = denom + 2; x2(t) = t;
x1(t) = t; y2(t) = 4*(y2(t-1)/4 + k/denom);
y1(t) = 4*(y1(t-1)/4 + k/denom); k = -k;
refreshdata end
drawnow line([0 ntimes], [pi pi],'color','c")

k = -k;
end
line([0 ntimes], [pi pil], 'color','c')

Differences are shown in italics. When you execute the code on the left, which
uses refreshdata, it animates the approximation process. The code on the
right uses linkdata and does not animate; it runs much faster. (A drawnow
command is not needed, because data linking buffers updates and refreshes
the graph is at half-second intervals.) The graphic results, shown in the next
image, are identical. Because both plots are in axes in the same figure, linking
the second graph also links the first graph to its variables.

2-20



Making Graphs Responsive with Data Linking

f Linked variables/expressions: v2 vs, x2,v1 vs, x1 Edit, -
4 " 4
35 E 3.5 B
= = M

ﬁlIIIIIIJ|I||||JM.'|I|J..I.JJ\A.muuu A }'MIIIIllllllnll|'|H|M'lM.uJ\.Auummuuuuu. i
’w‘wlllf'ﬂ'ﬁ"f'I\".'rr\.wn-vm-m-m vvvvvvvvvvv J er'ﬁ'1'|"|"I'|"'""|Wwwvrv-nr-rmv vvvvvvvvvvvvvvv
3 y B 3 B

25 L 25 I

0 50 100 0 50 100
Updated with REFRESHDATA Updated with LINKDATA

Using Linked Plot Controls

To minimize the Linked Plot information bar while remaining in linked mode,

click the hide/show button € on its right side; the button flips direction
and the bar is hidden. Clicking the button again flips the arrow back and
restores the Linked Plot information bar. Turning off linking cuts all data
source connections and removes the Linked Plot information bar from the
figure. However, the data source properties remain set, and the bar reappears
whenever a linked state is restored by selecting Tools > Link, depressing the
Linked Plot button, or calling the 1inkdata function. Whatever data sources
were established previously will then reconnect (assuming those variables
still exist in the same form).

The Data Source Button

The ““ down arrow button on the left side of the Linked Plot information
bar drops down a legend (similar to what the legend function produces but
without Display Names). The legend identifies workspace variables associated

2-21



2 Interactive Data Exploration

2-22

with plot objects for the entire figure (legend works on a per-axes basis), such
as these linked lineseries from the previous example, shown in the next image.

v Linked variables/expressions: v2 vs, x2,v1 vs, x1

— y2 w5, x2 T

— vyl ws, xl

|

The drop-down legend names variable linked to the graphic objects in the
figure. For items to appear there, a graph must have an XDataSource,
YDataSource, or a ZDataSource property that MATLAB can evaluate without
error. The icon for each list entry reflects the Color, Linestyle and Marker of
the corresponding graphic object, making clear which graphic objects link to
which variables. The drop-down legend is informational only; you can only
dismiss it after reading it by clicking anywhere else on the figure.

The Edit Bution

Clicking the Edit link on the information bar opens the Specify Data Source
Properties modal dialog box for you to set the DisplayName, XDataSource,
YDataSource, and ZDataSource properties of plot objects in the figure to
columns or vectors of workspace variables. Changing a DisplayName updates
text on a legend, if present for the variable, and has no other effects. The
three columns on the right contain drop-down lists of workspace variables.
You can also type variable names and ranges, or an M-expression. When you
change variables or their ranges on the fly with this dialog box, variables
plotted against one another must be compatible types and have the same
number of observations (as in any bivariate graph).

If you attempt to link a plot and 1linkdata can identify more than one possible
workspace variable for one or more plot objects, the Specify Data Source
Properties dialog box appears for you to resolve the ambiguity. If you choose
not to or are unable to do so and cancel the dialog box, data linking is not
established for those graphic objects.



Making Graphs Responsive with Data Linking

When Data Links Fail

Updating a linked plot can fail if the strings in the XDataSource,
YDataSource, or ZDataSource properties are incompatible with what is in the
current workspace. Consequently, the corresponding XData, YData, and ZData
cannot be updated. This happens most often because variables are cleared or
no longer exist when the workspace changes (e.g., when you are debugging).

However, failing links do not affect the visual appearance of the object in
the graph. Instead, a warning icon and message appears on the Linked Plot
information bar when this occurs for any plotted data in the figure. The
failing link warning is general, but you can identify which variables are
affected by clicking the Data Source “® button. If you hide the Linked Plot
information bar (by clicking its Hide « button), the bar reappears when a
data links fails, alerting you to the issue.

2-23



2 Interactive Data Exploration

2-24

Interacting with Graphed Data

In this section...

“Data Brushing with the Variable Editor” on page 2-24
“Using Datatips to Explore Graphs” on page 2-25

“Example — Visually Exploring Demographic Statistics” on page 2-26

Data Brushing with the Variable Editor

Shared variables in linked figures are highlighted in all figures when data
in one is brushed. They also highlight when you open the variables in the
Variable Editor.

The Variable Editor also has a Data Brushing tool. It has no Data Linking
tool, however, because in the Variable Editor, variables are always “live,” and
their data sources therefore respond immediately to any changes you make in
the Variable Editor. This means that whenever you place it in data brushing
mode, brush marks and changes to data values you make in the Variable
Editor appear in linked plots.

If you have linked plots of matrix data with observations across rows and
where each column represents a distinct, related quantity, brushing any
observation—whether in a graph or the Variable Editor—highlights all
observations in the same row, as you can see in the next image.



Interacting with Graphed Data

File Edit View Insert Tools Desktop Window Help £ File Edit WView Insert Tools Desktop Window Help £
Deds [ 309 e« [8|0EaD Dol ra3o9E£-[B|0AaD
@\ Linked variables/expressions: count(:,2) vs, count(:, 1) Edit, .. « -_?.- Linked variables/expressions: count(:,2] vs. count(:,3) Edit... -
180 1 o 150 o
o © S
.l
File FEdt View Graphics Debug Desktop » |2 x
“ ° IERDL el »
E H count <24x3 double>
8 o]
o o 1 2 3 4 o
@ 11 1" 9 5 g o
s0- oo 2 7 13 1 o
® o 3 14 17 20 .
4]\ 11 13 9 o
5[\ 43 51 ] o
o \ = I 7
0 \ ‘ \ 7\ Bl 132 1 56| ~a—" ) ‘ ) ) ‘ ) |
1] 20 a0 C ] Ml (5 180 —"7 50 100 150 200 250 30
count(;,1) 9 33 85 115] count(: 3)
10 28 3 55
1 12 12 14 /
12 18 Fij Ex /{ When in data brushing mode,
13 18 19 29 : : :
= - e = > you can h_|gh||ght Qata points
19 3 - in the Variable Editor or in
16 32 47 10 i
= 2 g D any linked plot.
18 57, 55 151
19 44 55 90
20 114 145 257
21 35 58 63
22 1 12 15
= 13 9 15
24 10 9 7| =
A ;IJ
*: popdata x‘ count x‘

4

For more information about the using the Variable Editor, see “Viewing and
Editing Workspace Variables with the Variable Editor” in the MATLAB®
Desktop Tools and Development Environment documentation and see the
reference page for openvar.

Using Datatips to Explore Graphs

A datatip is a small display associated with an axes that reads out individual

data observation values from a 2-D or 3-D graph. You create datatips by mouse
1

clicks on graphs using the Data Cursor tool E from the figure toolbar.

When you select this tool, you are in data cursor mode—signified by a hollow

cross-hair cursor—in which you identify x-, y-, and z-values of data points you

click. Like data points you brush, export such values to the workspace.

2-25



2 Interactive Data Exploration

2-26

For descriptions of data cursor properties and how to use them, see “Data
Cursor — Displaying Data Values Interactively” in the MATLAB Graphics
documentation and see the reference page for datacursormode.

The default behavior of datatips is to simply display the XData, YData, and
ZData values of the selected observations as text in a box. Sometimes this
information is not helpful by itself, and you might want to replace or augment
it with other information. You can modify this behavior to display other facts
connected to observations. You customize datatip behavior by constructing a
datatip text update function (in M-code) to construct text strings for display in
datatips and then instructing data cursor mode to use your function instead of
the default one.

Customize data cursor update functions to display information such as

* Names associated with x-, y-, and z-values
* Weights associated with x-, y-, and z-values
¢ Differences in x-, y-, and z-values from the mean or their neighbors

¢ Transformations of values (e.g., normalizations or to different units of
measure)

® Related variables

You can create datatip text update functions to display such information and
change their behavior on the fly. You can even make the update function
behave differently for distinct observations in the same graph if your update
function or the code calling it can distinguish groups of them. The next

section contains an example of coding and using a customized data cursor
update function.

Example — Visually Exploring Demographic Statistics

¢ “The Datatip Text Update Function” on page 2-27

e “Preparing, Plotting, and Annotating the Data” on page 2-29

e “Explore the Graph with the Custom Data Cursor” on page 2-32
¢ “Plot and Link a Histogram of a Related Variable” on page 2-34



Interacting with Graphed Data

e “Explore the Linked Graphs with Data Brushing” on page 2-36

® “Plot the Observations on a Linked Map” on page 2-37

The extended example that follows begins by using datatips to explore the
incidence of fatal traffic accidents tabulated for U.S. states, with respect to
state populations. The example extends this analysis to brush, link, and map
the data to discover spatial patterns in the data. Each section of the example
has four or fewer steps. By executing them all, you gain insight into the data
set and become familiar with useful graphical data exploration techniques.

Censuses of population and other national government statistics are valuable
sources of demographic and socioeconomic data. An important aspect of census
data is its geography, i.e., the regions to which a given set of statistics applies,
and at what level of granularity. When exploring census data, you frequently
need to identify what geographic unit any given observation represents.

This example uses datatips to show place names and statistics for individual
observations. You pass place names and the data matrix to a custom text
update function to enable this. The place names are for U.S. states and the
District of Columbia. If all these names were placed as labels on the x-axis,
they would be too small or too crowded to be legible, but they are readable one
at a time as datatips.

The example also illustrates how sorting a data matrix by rows can enhance
interpretation when the original ordering (in this case alphabetical by state)
provides no special insight into relationships among observations and
variables.

The Datatip Text Update Function
Datatips can present other information beyond x-, y- and z-values. Read

through the example function labeldtips, which takes three more
parameters than a default callback, and displays the following information:
o Its y-value

¢ Deviation from an expected y-value

® Percent deviation from the expected y-value

® The observation’s label (state name)

2-27



2 Interactive Data Exploration

Because it customizes datatips, the function must be an M-file that you invoke
from the Command Window or from a script.

function output_txt = labeldtips(obj,event_obj,...
xydata, labels,xymean)
Display an observation's Y-data and label for a datatip

o°

% obj Currently not used (empty)

% event_obj Handle to event object

% xydata Entire data matrix

% labels State names identifying matrix row

% Xymean Ratio of y to x mean (avg. for all obs.)

o°

output_txt Datatip text (string or string cell array)
This datacursor callback calculates a deviation from the
expected value and displays it, Y, and a label taken

from the cell array 'labels'; the data matrix is needed
to determine the index of the x-value for looking up the
label for that row. X values could be output, but are not.

d® o° o° o°

o°

pos = get(event_obj, 'Position');
X = pos(1); y = pos(2);
output_txt = {['Y: ',num2str(y,4)]1};
ydev round((y - Xx*xymean));
ypct = round((100 * ydev) / (x*xymean));
output_txt{end+1} = ['Yobs-Yexp: ' num2str(ydev)
"; Pct. dev: ' num2str(ypct)];
idx = find(xydata == x,1); % Find index to retrieve obs. name
% The find is reliable only if there are no duplicate x values
[row,c0l] = ind2sub(size(xydata),idx);
output_txt{end+1} = cell2mat(labels(row));

Copy this code into an M-file and save it as labeldtips.m in your working
directory or somewhere on your MATLAB path.

To

2-28

use this update function, first declare it as a callback in a data cursor object:

hdt = datacursormode;
set(hdt, 'UpdateFcn', {@labeldtips,hwydata,statelabel,usmean})



Interacting with Graphed Data

hdt is the handle of a data cursor mode object for the figure you want to
explore; declare the function’s name and formal arguments as a cell array.
The call to datacursormode puts the current figure in data cursor mode.

Preparing, Plotting, and Annotating the Data

The following steps show how you load statistical data for U.S. states, plot
some of it, and enter data cursor mode to explore the data:

1 Load U.S. state data statistics from the National Transportation Safety
Highway Administration and the Bureau of the Census and look at the
variables:

load 'accidents.mat'

whos
Name Size
datasources 3x1
hwycols 1x1
hwydata 51x17
hwyheaders 1x17
hwyidx 51x1
hwyrows 1x1
statelabel 51x1
ushwydata 1x17
uslabel 1x1

Bytes

2568
8
6936
1874
408
8
3944
136
86

The data set has 51 observations for 17 variables.

Class

cell
double
double
cell
double
double
cell
double
cell

The state-by-state statistics; the double 51-by-17 matrix hwydata

The variable (column) names; the 1-by-17 text cell array hwyheaders

The state names; the 51-by-1 text cell array statelabel
Values for the entire United States for the 17 variables; the 1-by-17

matrix ushwydata

The label for the US values; the 1-by-1 cell array uslabel

Metadata describing data sources; the 3-by-1 cell array datasources

2-29



2 Interactive Data Exploration

2 (Not required) To help you interpret graphs of it, the data matrix and
labels have been presorted by rows to be in ascending order of total state
population. The 51-by-1 vector hwyidx contains indices from the presorting
(the data were originally in alphabetic order)

You should not carry out this step now, but if you ever want to resort the
rows of the data array and state labels alphabetically, you could do the
following:

[hwydata hwyidx] = sortrows(hwydata,1);
statelabel = statelabel(hwyidx);

(The first column of the hwydata matrix contains Census Bureau state IDs
that ascend in alphabetical order.)

3 Plot a line graph of the population by state as x versus the number of traffic
fatalities per state as y:

hf1 = figure;

plot (hwydata(:,14),hwydata(:,4));
xlabel (hwyheaders(14))

ylabel (hwyheaders(4))

Because the state observations are sorted by population size, the graph is
monotonic in x. The larger a population a state has, the more variation in
traffic accident fatalities it tends to show.

2-30



Interacting with Graphed Data

4500 T T T T T T

4000 - .

3500 .

3000 .

2500 1

2000 1

Traffic fatalities

1500 | 1

1000 | 1

500+ 1

1 1 1
0 0.5 1 15 2 25 3 35
Total Population x 10

4 Compute the per capita rate of traffic fatalities for the entire United States;
in the next part of this example, the data cursor update function uses this
average to compute an expected value for each state you query:

usmean = ushwydata(4)/ushwydata(14)

usmean =
1.5150e-004

The statistic shows that nationally, about 150 per 100,0000 people die in
traffic accidents every year.

Use usmean to compute the smallest and largest expected values by
multiplying it by the smallest and largest state populations, and draw a
line connecting them:

line([min(hwydata(:,14)) max(hwydata(:,14))],...

[min(hwydata(:,14))*usmean max(hwydata(:,14)*usmean)],...
‘Color','m");

2-31



2 Interactive Data Exploration

2-32

6000 T T T T T T

5000 | b

4000 - .

3000 b

Traffic fatalities

2000 b

1000 .

1 1 1 1
0 0.5 1 15 2 25 3 35
Total Population x 10"

Note The magenta line is not a regression line; it is a trend line that plots
the number of traffic deaths that a state of a given size would have if all
states obeyed the national average.

Explore the Graph with the Custom Data Cursor

You can now explore the graphed data with the example custom data cursor
update function labeldtips (which must be on the MATLAB path or in the
current directory). labeldtips displays state names and y-deviations.

1 Turn on data cursor mode and invoke the custom callback:

hdt = datacursormode;

set(hdt, 'DisplayStyle', 'window');

% Declare a custom datatip update function to display state names
set(hdt, 'UpdateFcn', {@labeldtips,hwydata,statelabel,usmean})



Interacting with Graphed Data

The data cursor 'window' display style sends datatip output to a small
window that you can move anywhere within the figure. This display style is
best suited to datatips that contain more text than just x-, y-, and z-values.
The labeldtips callback remains active for that figure until you use set
to replace it with another function (or empty, to restore the default data
cursor behavior). Click the right-most point on the blue graph.

6000 T T T T T T

5000

4000

3000

Traffic fatalities

2000

1000

LINESERIES

| | Y4120
0 05 4 15 9 YDpS-Y_exp: -1012; Pet. dey: -20
Califarnia

Total Population

The datatip shows that California has the largest population and the
largest number of traffic fatalities, 4120. However, it had 1012, or 20%,
fewer fatalities than predicted by the national average.

2 The next data point to the left depicts Texas. Click that data point or press
the left arrow to show its datatip.

2-33



2 Interactive Data Exploration

2-34

6000 T T T T T T

5000 |

4000 -

3000

Traffic fatalities

2000

1000

LINESERIES

| | Y 35583
0 05 4 15 2 Yobe-Yexp: 424, Pot. dew: 13
Texas

Total Population

Texas had 3583 fatalities, which is 424 (13%) more than the expected value.
To see results from other states, move the datatip by dragging the black
square or using the left or right arrow to step it along the graph. If you
know a little about U.S. geography, you might observe a pattern.

Plot and Link a Histogram of a Related Variable

The ninth column of hwydata, labeled "Fatalities per 100K Licensed Drivers,”
is related to population. Plot a histogram of this variable to see which states
have fewer or more fatalities per driver. To do this, link the plots to their
data, and brush either of them.

1 Open a new figure and plot a histogram of Fatalities per 100K Licensed
Drivers in it:

hf2 = figure
hist(hwydata(:,9),5)
xlabel (hwyheaders(9))



Interacting with Graphed Data

2 Link both the line graph and the histogram to their data sources in
hwydata:

linkdata(hf1)
linkdata(hf2)

=2

You can also click the Data Linking tool on the two figures. The
first figure links automatically; the histogram does not because linkdata
cannot determine with certainty the YDataSource for histograms. The
Linked Plot information bar on top of the histogram informs you No
Graphics have data sources. Cannot link plot: fix it.

3 Click fix it to open the Specify Data Source Properties dialog box. Type
hwydata(:,9) into the YDataSource edit box and click OK.

) Specify Data Source Properties X

Edit table ko specify data source Far graphics,

DisplayMame ¥DakaSource YDataSource ZDakaSource

(- LI Fiydatal:, 2 ;I ;I

ICZIKI\IS Apply | Cancel

The Linked Plot information bar displays the data source you identified.
The histogram looks like this.

2-35



2 Interactive Data Exploration

‘ Linked variables/expressions: hwydata(:, 9) Edit,..

0
10 15 20 25 30 35 40 45 50
Fatalities per 100K licensed drivers

Explore the Linked Graphs with Data Brushing
Now that you have linked both graphs to a common data set, you can brush
portions of one to see the effect on the other.

1 It isn’t necessary, but you might want to dock the plots in a figure group
so you can see them side by side.

2 Select the Data Brushing tool s | on the histogram plot. Brush the three
right-most bars in the histogram; they represent higher values that range
from 25 to 48 fatalities per 100,000 drivers.

2-36



Interacting with Graphed Data

-l

Fil= Edit Wiew Insert Tools Debug Desktop Window Help £ |
A= FR XD EAL- 2|02 aD BOoEea 0
* Figure 1 xllFigureQ ><|
AR T
-:E:- Linked variables|expressions: hwydatal:,4) v...  Edit... () Linked variables/exprassions: hwydata(:,)
buuy £U
5000
15
5 4000
E
<3000 1 . 10
=
5
= 2000
5
1000
0 ; : : 0 . e :
0 1 23 4 10 20 50
Total Population 10" Fatalities per 100K licensed drivers

A
Notice which observations light up on the line graph. Not only are these
states with smaller populations, they are also states with above-average
numbers of traffic fatalities.

3 Click the line graph to make it the active figure and select its Data
Brushing tool. Click all the observations you can that fall below the
straight line average. You need to hold the Shift key down to make
multiple selections, whether by clicking or dragging. You might want to
zoom in on the left side of the graph to brush properly there. What do you
see happening on the histogram?

Plot the Observations on a Linked Map

The hwydata matrix contains geographic location information in the form of
latitude-longitude coordinates of a centroid for each state. You can make a
crude map by generating a scatter plot of these coordinates, using longitude
as x and latitude as y. If you link the scatter plot, you can brush all the plots
at once.

2-37



2 Interactive Data Exploration

1 To provide a context for the map, plot an outline map of the conterminous
United State. Obtain the latitude and longitude coordinates required from
the demo MAT-file uspoly.mat:

hf3 = figure;

load usapolygon

patch(uslon,uslat,[1 .9 .8], 'Edgecolor', 'none');
hold on

50 -

40+

30+

25 1 1 1
-130 -120 -110 -100 -90 -80 -70 -60

When projected into the figure. the map is distorted to fit the aspect ratio
of the axes.

2 Map the centroid longitude and latitude as a scatter plot with filled circles.
Plot a rectangle over part of the map, as follows:

scatter(hwydata(:,2),hwydata(:,3),36,'b', 'filled');

xlabel('Longitude')

ylabel('Latitude')

rectangle('Position',[-115,25,115-77,36-25], ...
'"EdgeColor',[.75 .75 .75])

2-38



Interacting with Graphed Data

B5r ®
60 -
851
50
» » L
3 45+ . ® . * »e »
= . * p n."
S a0} N N v
. > »
35t » s T a7 .'
LR
30+ s »
»
25+
20 . 1 1 1 1 1 1 1 1 1 1
160 -150 -140 130 120 110 100 80 80 70 6O
Laongitude

The x- and y-limits change, shrinking the map, because the data matrix
contains observations for Alaska and Hawaii, but the map outline file does
not include these states.

3 Dock the map underneath the other two figures. Brush the map after
turning on the Data Linking and Data Brushing tools for its figure. Drag
across the gray rectangle with the Data Brushing tool to highlight just the
southeastern and southwestern states. What you see should look like this.

2-39



2 Interactive Data Exploration

OGS [k [ @D AL

EYEIEIEN-=

BEOB &0

Figure 1 = | Figure 2 = || Figure 3 = |

2-40

'-E.' Linked variables/expressions: hwydatal:, 4) v...

Traffic fatalities

'.E:.' Linkad variables/expressions: hwydatal:,3) v...

Latitude

Uy

5000

4000

3000

2000

1000

-’U

60

50

40

30

o2 x|
Edit,.. -

02 x|
Edit,..

- '-E.' Linked variables/expressions: hwydata(:,9)

ZU

15

10

»

ol ®

2 3 4
Total Population

0
10

20
Fatalities per 100K licensed drivers

30 40 50

%10

Edit, ..

-

-160

140

320 100
Longitude
4
Data brushing and linking reveals that almost all the states with
above-average traffic fatality rates are in the southern part of the U.S.

Using graphic data exploration, you have identified some intriguing
regularities in this data. However, you have not identified any causes for the



Interacting with Graphed Data

patterns you found. That will take more work on with the data, and possibly
additional data sets, along with some hypotheses and models.

2-41



2 Interactive Data Exploration

2-42



Regression Analysis

Linear Correlation (p. 3-2)

Linear Regression (p. 3-7)
Interactive Fitting (p. 3-10)
Programmatic Fitting (p. 3-23)

Covariance and correlation
coefficients

Introduction to least squares fitting
Basic Fitting GUI

Functions for least squares fitting



3 Regression Analysis

Linear Correlation

In this section...

“Introduction” on page 3-2

“Covariance” on page 3-2

“Correlation Coefficients” on page 3-5

Introduction

Before you fit a function to model the relationship between two measured
quantities, it is a good idea to determine if a relationship exists between
these quantities.

Correlation quantifies the strength of a linear relationship between two
variables. When there is no correlation between the two quantities, then
there is no tendency for the values of one quantity to increase or decrease
with the values of the second quantity.

The following three MATLAB® functions compute correlation coefficients
and covariance. In typical data analysis applications, where you are mostly
interested in the degree of relationship between variables, you might only
calculate correlation coefficients, but these are derived from covariances.

Function Description
corrcoef Correlation coefficient matrix
cov Covariance matrix

xcorr (a Signal | Cross-correlation sequence of a random process (includes
Processing autocorrelation)

Toolbox™
function)

Covariance

Use the MATLAB cov function to explicitly calculate the covariance matrix
for a data matrix (where each column represents a separate quantity).



Linear Correlation

The covariance matrix has the following properties:

® cov(X) is symmetrical.

e diag(cov (X)) is a vector of variances for each data column, which represent
a measure of the spread or dispersion of data in the corresponding column.

® sqrt(diag(cov(X))) is a vector of standard deviations.
® The off-diagonal elements of the covariance matrix represent the covariance

between the individual data columns.

Here, X can be a vector or a matrix. For an m-by-n matrix, the covariance
matrix is n-by-n.

For an example of calculating the covariance, load the sample data in
count.dat that contains a 24-by-3 matrix:

load count.dat

Calculate the covariance matrix for this data:

cov(count)

MATLAB responds with the following result:

ans =
1.0e+003 *
0.6437 0.9802 1.6567
0.9802 1.7144 2.6908
1.6567 2.6908 4.6278

The covariance matrix for this data has the following form:

0211 0212 0213

0221 0222 0223

0231 0232 0233
2

Gzlj =0 Jji



3 Regression Analysis

3-4

Here, 02ij is the covariance between column i and column j of the data. Because
the count matrix contains three columns, the covariance matrix is 3-by-3.

Note In the special case when a vector is the argument of cov, the function
returns the variance.




Linear Correlation

Correlation Coefficients

The correlation coefficient matrix represents the normalized measure of the
strength of linear relationship between variables.

The correlation coefficient ry y between two random variables X and Y
with expected values py and py and standard deviations oy and Oy is their
covariance normalized by their standard deviations, as follows

_cov(X,Y) _ E((X —uX)(Y —pY))
' OxOY B OXxOY

where E is the expected value operator and cov means covariance. Since pX =
EX), 0X2 = E(X2) - E2(X), and likewise for Y, Iyy is also

- E(XY)—E(X)E(Y)
" JE(X2)—E2(X)JE(Y2)—E2(Y)

The correlation is defined only if both of the standard deviations are finite
and both of them are nonzero.

For time series, correlation coefficients r, are given by
N
Z(xt = X) (%41, = X)
N
—\2
2 (a; —X)

t=1

where x, is a data value at time step ¢, & is the lag, and the overall mean is
given by

3-5



3 Regression Analysis

The MATLAB function corrcoef produces a matrix of correlation coefficients
for a data matrix (where each column represents a separate quantity). The
correlation coefficients range from -1 to 1, where

® Values close to 1 suggest that there is a positive linear relationship between
the data columns.

® Values close to -1 suggest that one column of data has a negative linear
relationship to another column of data (anticorrelation).

® Values close to or equal to 0 suggest there is no linear relationship between
the data columns.

For an m-by-n matrix, the correlation-coefficient matrix is n-by-n. The
arrangement of the elements in the correlation coefficient matrix corresponds
to the location of the elements in the covariance matrix, as described in
“Covariance” on page 3-2.

For an example of calculating correlation coefficients, load the sample data in
count.dat that contains a 24-by-3 matrix:

load count.dat

Type the following syntax to calculate the correlation coefficients:

corrcoef(count)

This results in the following 3-by-3 matrix of correlation coefficients:

ans =
1.0000 0.9331 0.9599
0.9331 1.0000 0.9553
0.9599 0.9553 1.0000

Because all correlation coefficients are close to 1, there is a strong correlation
between each pair of data columns in the count matrix.



Linear Regression

Linear Regression

In this section...

“Introduction” on page 3-7

“Residuals and Goodness of Fit” on page 3-8

“Fitting Data with Curve Fitting Toolbox™ Functions” on page 3-8

Introduction

A data model explicitly describes a relationship between predictor and
response variables. Linear regression fits a data model that is linear in

the model coefficients. The most common type of linear regression is a
least-squares fit, which can fit both lines and polynomials, among other linear
models.

Before you model the relationship between pairs of quantities, it is a good
idea to perform correlation analysis to establish if a linear relationship exists
between these quantities. When you do so, be aware that variables can have
nonlinear relationships, which correlation analysis cannot detect. For more
information, see “Linear Correlation” on page 3-2.

The MATLAB® Basic Fitting GUI helps you to fit your data, which enables
you to calculate model coefficients and plot the model on top of the data. For
an example of using this GUI, see “Example: Using Basic Fitting GUI” on
page 3-12. You can also use the MATLAB functions polyfit and polyval to
fit your data to a model that is linear in the coefficients. For an example of
using these functions, see “Example: Programmatic Fitting” on page 3-30.

If you need to fit data with a nonlinear model, you can try transforming the
variables to make them linear. You can use the Statistics Toolbox™ nlinfit
function, or use Curve Fitting Toolbox™ functions.

In this chapter, you learn how to do the following:

® Use correlation analysis to determine whether two quantities are related to
justify fitting the data.

e Fit a linear model to the data.


file:///B:/matlab/doc/src/toolbox/toolbox/curvefit/curvefit_product_page.html

3 Regression Analysis

® Plot the model and the data on the same plot.

¢ Evaluate the goodness of fit using a plot of the residuals.

Residuals and Goodness of Fit

Residuals are defined as the difference between the observed values of the
response variable and the values that are predicted by the model. When
you fit a model that is appropriate for your data, the residuals approximate
independent random errors.

To calculate fit parameters for a linear model, the sum of the squares of the
residuals are minimized to produce a good fit. This is called a least-squares fit.

You can gain insight into the “goodness” of a fit by visually examining a plot of
the residuals: if the residual plot has a pattern (i.e., does not appear to have a
random scatter), this indicates that the model does not properly fit the data.

Notice that the “goodness” of a fit must be determined in the context of your
data. For example, if your goal of fitting the data is to extract coefficients
that have physical meaning, then it is important that your model reflect the
physics of the data. Understanding what your data represents and how it was
measured is important when evaluating the goodness of fit.

Fitting Data with Curve Fitting Toolbox™ Functions

The Curve Fitting Toolbox software extends core MATLAB functionality by
enabling the following data-fitting capabilities:

¢ Linear and nonlinear parametric fitting, including standard linear least
squares, nonlinear least squares, weighted least squares, constrained least
squares, and robust fitting procedures

® Nonparametric fitting

o Statistics for determining the goodness of fit

e Extrapolation, differentiation, and integration

o GUI that facilitates data sectioning and smoothing

e Saving fit results in various formats, including M-files, MAT-files, and
workspace variables



Linear Regression

For more information, see the Curve Fitting Toolbox documentation.


file:///B:/matlab/doc/src/toolbox/toolbox/curvefit/curvefit_product_page.html

3 Regression Analysis

Interactive Fitting

In this section...

“The Basic Fitting GUI” on page 3-10
“Preparing for Basic Fitting” on page 3-10
“Opening the Basic Fitting GUI” on page 3-11

“Example: Using Basic Fitting GUI” on page 3-12

The Basic Fitting GUI
The MATLAB® Basic Fitting GUI allows you to interactively:

® Model data using a spline interpolant, a shape-preserving interpolant, or a
polynomial up to the tenth degree

¢ Plot one or more fits together with data

¢ Plot the residuals of the fits

¢ Compute model coefficients

¢ Compute the norm of the residuals (a measure of the goodness of fit)

¢ Use the model to interpolate or extrapolate outside of the data

® Save coefficients and computed values to the MATLAB workspace for use
outside of the GUI

® Generate an M-file to recompute fits and reproduce plots with new data

Note The Basic Fitting GUI is only available for 2-D plots. For more
advanced fitting and regression analysis, see the Curve Fitting Toolbox
documentation and the Statistics Toolbox documentation.

Preparing for Basic Fitting

The Basic Fitting GUI sorts your data in ascending order before fitting. If
your data set is large and the values are not sorted in ascending order, it will
take longer for the Basic Fitting GUI to preprocess your data before fitting.

3-10


http://www.mathworks.com/products/curvefitting/
http://www.mathworks.com/products/statistics/

Interactive Fitting

You can speed up the Basic Fitting GUI by first sorting your data. To create
sorted vectors x_sorted and y_sorted from data vectors x and y, use the
MATLAB sort function:

[x_sorted, i] = sort(x);
y_sorted = y(i);

Opening the Basic Fitting GUI

To use the Basic Fitting GUI, you must first plot your data in a figure window,
using any MATLAB plotting command that produces (only) x and y data.

To open the Basic Fitting GUI, select Tools > Basic Fitting from the menus
at the top of the figure window.

+) Basic Fitting - 1 =10l ]
Select data: Idata1 'l

[ Center and scale ¥ data

Plot fit rMumerical result
Check to dizplay fits an figure
[ spline interpolant Fit LI :
[ shape-preserving interpolant Coefiicients and narm of residuals | LMo T 109
[ linear Enter value(s) or a valid MATLAB
[ quadratic expression such as ¥, 1:2:10 or
[~ cubic [1014]

[ 4th dearee polynamial
[ sth degree polynomial I Evaliate |
[ Gth dearee polynamial
[ 7th degree polynornial ® | 1) |
[ gth dearee polynamial

[ Gth dearee polynamial

[ 10th dearee polynamial

[ Show equations

Significant digits: I 2 'l

[ Plat residuals

Bar plat = Save to workspace. .. |
Subplot = SavE IO WIS HECE.. | i Flat evaluated/results

[ Shaow narm of residuals

The GUI consists of three panels:

® For selecting a model and plotting options

3-11



3 Regression Analysis

3-12

® For examining and exporting model coefficients and norms of residuals
* For examining and exporting interpolated and extrapolated values

To expand or collapse the panels, use the arrow button in the lower right
corner of the interface.

Example: Using Basic Fitting GUI

The example in this section shows you how to use the Basic Fitting GUI.
* “Loading and Plotting Data” on page 3-12

e “Fitting Data” on page 3-13

* “Viewing and Saving Fit Parameters” on page 3-17

® “Interpolating and Extrapolating Values” on page 3-18

® “Generating an M-file” on page 3-21

Loading and Plotting Data

The file census.mat contains U.S. population data for the years 1790 through
1990.

To load and plot the data, type the following commands at the MATLAB
prompt:

load census
plot(cdate,pop,'ro')

The load command adds the following two variables to the MATLAB
workspace:

e cdate is a column vector containing the years from 1790 to 1990 in
increments of 10. This is the predictor variable.
® pop is a column vector with U.S. population for each year in cdate. This is

the response variable.

The data vectors are sorted in ascending order, by year. The plot shows the
population as a function of year.



Interactive Fitting

Now you are ready to fit the data.

Fitting Data

1 Open the Basic Fitting dialog box by selecting Tools > Basic Fitting in

the Figure window.

) Figure 1 == [
File Edit View Insert IW Deskkop  Window  Help u
D@E%‘h‘i Edit Plat |D@
Zaom In 590
290 Zoom Cut —
Pan
Raotake 30 ©
200 Drata Cursor 1
. Reset Yiew o]
% Options ]
% 150 Fin o &Axes © i
? Snap To Lavout Grid o 2
é il Wiew Lay.nut Grid i s i
= Smart Align and Distribute
o Align Distribute Toal ...
=y Align » i
Distribuke »
1D?5JD 1AL Data Statistics ! f 19'50 000

Year

2 In the Plot fits area of the Basic Fitting dialog box, select the cubic check
box to fit a cubic polynomial to the data.

MATLAB displays the following warning:

Polynomial is badly conditioned. Removing

repeated data points or centering and scaling
may improve results.

3-13



3 Regression Analysis

3-14

The warning indicates that the computed coefficients for the model will

be highly sensitive to random errors in the response (in this case, the
measured population). To improve model accuracy, it is helpful to transform
the predictors (in this case, the dates) by normalizing their center and
scale. This is done by computing the z-scores:

where x is the predictor data, p is the mean of x, and o is the standard
deviation of x. This centers the data at 0, with a standard deviation of 1.

To perform this transformation on the predictor data, select the Center
and scale x data check box.

After centering and scaling, model coefficients are computed for the y

data as a function of z. These are different (and more robust) than the
coefficients computed for y as a function of x. The form of the model, and the
norm of the residuals, is unchanged. The Basic Fitting GUI automatically
rescales the z-scores so that the fit is displayed on the same scale as the
original x data.

The Basic Fitting GUI calls the MATLAB functions polyfit and polyval
to compute and display the fit. To understand the way in which the
centered and scaled data is used as an intermediary to create the final plot,
type the following at the MATLAB command prompt:

load census

X = cdate;
y = pop;
z = (x-mean(x))/std(x); % Compute z-scores of x data

plot(x,y,'ro') % Plot data
hold on

zfit = linspace(z(1),z(end),100);
pz = polyfit(z,y,3); % Compute conditioned fit
yfit = polyval(pz,zfit);

xfit = linspace(x(1),x(end),100);



Interactive Fitting

plot(xfit,yfit,'b-') % Plot conditioned fit vs. x data

3 Select the following options:
¢ Display the model equation in the plot
¢ Display the residuals as a subplot
¢ Display the norm of the residuals in the plot

«): Basic Fitting -1 0 ] 5

Select data | data 1 ~|

¥ Certer and scale X data

Plat fit=

Check to dizplay fits oh figure
[l zpling interpolant

I shape-preserving interpolant
[ linear

[ quadratic

= v cubic

[ 4th degree polynormisl

[ 5th degree polynormisl

[ Gth degree polynormisl

[ Tth degree polynormisl

[ &th degree polynormisl

[ oth degree polynormisl

SI'D‘I'J BEII.m.IJI'IS on “'ﬂ pb‘I [~ 10th degree polynomisl
with 2 significant digits ———— I Show equations
in the coefticients. Sigrificant digts: I 2 vI

v Plot residuals

Plot residuak os a Bar - -]
subplot and show the sm;m ~]

norm of the residuaks.

Fit a cubic polynomial
to the selected data set.

v Showy norm of residusls

Help | Close | 9 |

The resulting display is shown in the following figure:

3-15



3 Regression Analysis

3-16

) Figure 1

File Edit View Insert Tools Deskiop Window Help

=10 x|

DedS k| aaQN® € 0E| 50

300

200+

100

y=0.92% +25%2 + 747 +62

Mw

—~

atal ||

cubic

0
1740

1800

1880 1900 1940

residuals

20

00

(4]

| Clubic: norrn of r;asicluals = 12.2I38

1800

1850 1900 1950

(ubic equation is for
centered and scaled X values.

Drog the legend to a new
location when it covers the
plot.

The cubic fit is a poor predictor before the year 1790, where it indicates a

decreasing population. The model seems to approximate the data reasonably
well after 1790, but a pattern in the residuals shows that the model does not

meet the assumption of normal error, which is a basis for the least-squares
fitting carried out by the Basic Fitting GUI.

For comparison, try fitting another equation to the census data by selecting it

in the Plot fits area.

Tip You can change the default plot settings or rename data sets with the
Property Editor.




Interactive Fitting

Viewing and Saving Fit Parameters

In the Basic Fitting dialog box, click the arrow button =3|to display the
estimated coefficients and the norm of the residuals in the Numerical
results panel.

=) Basic Fitting - 1 =10] x|
Select data: I data 1 v |
[¥ Certer and scale X data

Plat fits Mumetrical resulis

Check to display fits on figure
™ =piine irterpolart Fit: | cubic :I

I shape-preserving interpolant
I linesr

I~ guadratic

¥ cubic

[ ath degree palynormnisl

Coefficients and narm of residuals

p3*e + pd ;I

mhere ®x 15 normalized

by mean = 1590
and =td = 6Z.045

[ stk degree palynormnisl
[ &th degree palynormnisl
[ 7th degree polynormial

[ &th degree palynormizl Coefficients:
[ ath degree polynarnisl pl = 0.,9z2102
™ 10th degree polynomial pd = 25.183
[V Show equations p3 = 73.86

p4 = 61.744
Significant digts: I 2 v I

Morm of residuals =
12.238
Eiar plot il =

|7 Plot residualz

Subplot bt Save to workspace. .. |

[V Shaw morm of residuals

o | | >

To view a specific fit, select it from the Fit list. This displays the coefficients
in the Basic Fitting dialog box, but does not plot the fit in the figure window.

Note If you also want to display a fit on the plot, you must select the
corresponding Plot fits check box.

3-17



3 Regression Analysis

3-18

Save the fit data to the MATLAB workspace by clicking the Save to
workspace button on the Numerical results panel. This opens the
following dialog box:

o1 x]
|7 Save fit a2 a MATLAEB struct named: lﬂt—
|7 Save norm of residuals a3 a MATLAE variahle named: W
v Save residusls as a MATLAE variable named: W

0K | Cancel I

Click OK to save the fit parameters as a MATLAB structure:

fit
fit =
type: 'polynomial degree 3'
coeff: [0.9210 25.1834 73.8598 61.7444]

You can now use the fit results in MATLAB programming, outside of the
Basic Fitting GUL

Interpolating and Extrapolating Values
Suppose you wish to use the cubic model to interpolate the U.S. population in
1965 (not in the original data).

In the Basic Fitting dialog box, click the =3|button to specify a vector of x
values at which to evaluate the current fit.



Interactive Fitting

1 In the Enter value(s)... field, type the following value:

1965

Note Use unscaled and uncentered x values. You do not need to center
and scale first, even though you selected to scale x values to obtain the
coefficients in “Fitting Data” on page 3-13. Basic Fitting makes the
necessary adjustments behind the scenes.

2 Click Evaluate.

The x values and the corresponding values for f (x) computed from the fit
and displayed in a table, as shown below:

« ) Basic Fitting - 1

Select data: I data 1 Vl

[V Center and soale ¥ data

~Plat fit:

Check to display fits on figure

[l spling interpolant

I~ shape-preserving interpolant
[ liresr

I~ guadratic

¥ cubic

[ ath degree polynamizl
[ sth degree polynamizl
[ &th degree polynamizl
[~ 7th degree polynamizl
[ ath degree polynamizl
[ ath degree polynamizl
™ 10th degree polynamizl

v Show equations
Significant digits: I 2 Vl

¥ Plot residusls

Bar plot

-
-

Subplot

¥ Shows narm of residusls

Mumerical result

=10l x|

Fit: | cubic LI

Coefficients and norm of residuals

p3*x + pd ;I

where ¥ is normalized
by mean = 1890
and std = 6Z.043

Coefficients:
pl = 0.92102
pZ = 25.183
p3 = 73.86
pd = 61.744

Morm of residuals =
12,238

-

Save to workspace... |

—Find ' = ()

Enter walue(s) or & valid MATLAB
expression such as X, 1: 210 or
[1015]

|1 965 Evaluate |

X ()
1.97e+003 189

Save to workspace... |

Help | Close |

3-19



3 Regression Analysis

3 Select the Plot evaluated results check box to display the interpolated
value:

=13l =]

J Figure 1
File Edit View Insert Tools Desktop Window Help

heda y|aame 08|80

300
=092%3 + 2577 + 747 + 62
ol ! . ! * Interpolated
o data ! value
zubic

Wor 1 ¢ v=iy

D 1 1 1
1750 1800 1850 1900 1950 2000
residuals

gl Cubic: nomn of residuals = 12.233 i

1800 1380 1900 1980

4 Save the interpolated population in 1965 to the MATLAB workspace by
clicking Save to workspace.

This opens the following dialog box, where you specify the variable names:

x
W Savein a MATLAE wariable named: I ®

v Save (<] in a MATLAE waniable named: I f

oK Cancel |

3-20



Interactive Fitting

Generating an M-file

After completing a Basic Fitting session, you can generate an M-file that
recomputes fits and reproduces plots with new data.

1 In the Figure window, select File > Generate M-File.

This creates a function M-file and displays it in the MATLAB Editor. The
code in the M-file shows you how to programmatically reproduce what you
did interactively with the Basic Fitting dialog box.

2 Change the name of the function on the first line of the M-file from
createfigure to something more specific, like censusplot. Save the file to
your current directory with the file name censusplot.m

3 Generate some new, randomly perturbed census data:

randpop = pop + 10*randn(size(pop));

4 Reproduce the plot with the new data and recompute the fit:

censusplot(cdate,randpop, 1965)

3-21



Regression Analysis

3-22

) Figure 2

File Edit Yiew I[nsert Took Desktop Window Help

=10l x|

DedEG /aams € 082 80

300 T T .

2001 y=167 + 21772 + T4z + 67
where Z = (x- 1 9e+0033G2

100 E
data 1
0 Y = 1)
— cuhic
-100 L L L L
1750 1800 1850 1900 1950 2000
residuals
20

Cubic: norm of resicuals = 33 4347

1800 1850 1900

1950 2000




Programmatic Fitting

Programmatic Fitting

In this section...

“MATLAB® Functions for Polynomial Models” on page 3-23
“Linear Model with Nonpolynomial Terms” on page 3-27
“Multiple Regression” on page 3-29

“Example: Programmatic Fitting” on page 3-30

MATLAB® Functions for Polynomial Models
Two MATLAB® functions can model your data with a polynomial.

Polynomial Fit Functions

Function

Description

polyfit

polyfit(x,y,n) finds the coefficients of a polynomial
p(x) of degree n that fits the y data by minimizing the
sum of the squares of the deviations of the data from
the model (least-squares fit).

polyval

polyval(p,x) returns the value of a polynomial of
degree n that was determined by polyfit, evaluated
at x.

For example, suppose you measure a quantity y at several values of time t:

t=1000.30.81.11.62.3];
y = [0.6 0.67 1.01 1.35 1.47 1.25];

plot(t,y,'o")

3-23



3 Regression Analysis

) Figure 1 i [m] B3]
File Edit View Insert Tools Deskiop Window Help ]
NSRS k|RAM® E|08|[= O

16

o]
141
o]
o]
121
1 o
08+
o]
06ra<
0 0.5 1 15 2 25

Plot of y Versus t

You can try modeling this data using a second-degree polynomial function:
_ 2
y=aot” +aqt +ag

The unknown coefficients a,, a,, and a, are computed by minimizing the sum
of the squares of the deviations of the data from the model (least-squares fit).

To find the polynomial coefficients, type the following at the MATLAB prompt:
p=polyfit(t,y,2)
MATLAB calculates the polynomial coefficients in descending powers:

p =
-0.2942 1.0231 0.4981

The second-degree polynomial model of the data is given by the following
equation:

y= -0.2942¢% +1.0231¢ +0.4981

3-24



Programmatic Fitting

To plot the model with the data, evaluate the polynomial at uniformly spaced
times t2 and overlay the original data on a plot:

t2 = 0:0.1:2.8; % Define a uniformly spaced time vector
y2=polyval(p,t2);
figure
plot(t,y,'o",t2,y2)

o°

Evaluate the polynomial at t2

o°

Plot the fit on top of the data
in a new Figure window

o°

) Figure 2 i [m] 9]

File Edit Wiew Insert Tools Desktop Window Help N

DEWs h RAND ¥ 08|50

1.6 T T T T T

Plot of Data (Points) and Model (Line)

Use the following syntax to calculate the residuals:

y2=polyval(p,t); % Evaluate model at the data time vector
res=y-y2; % Calculate the residuals by subtracting
figure, plot(t,res,'+') % Plot the residuals

3-25



3 Regression Analysis

3-26

) Figure 3 =10] x|
File Edit Wiew Insert Tools Deskbop ‘Window Help N
NEES L RAaM®|¥ 08| 710
015
L + p
0.1 N n
0.05t E
ot p
BRI -
I E
+ +
RIRES E
02l L L L L
0 na 1 15 2 25

Plot of the Residuals

Notice that the second-degree fit roughly follows the basic shape of the data,
but does not capture the smooth curve on which the data seems to lie. There
appears to be a pattern in the residuals, which indicates that a different
model might be necessary. A fifth-degree polynomial (shown next) does a

better job of following the fluctuations in the data.




Programmatic Fitting

<) Figure 3 i ] 5
-1

File Edit View Insert Tools Desktop Window Help

NEE& LeRAaN®|€(08 =0

7

B

Fifth-Degree Polynomial Fit

Note Ifyou are trying to model a physical situation, it is always important
to consider whether a model of a specific order is meaningful in your situation.

Linear Model with Nonpolynomial Terms

When a polynomial function does not produce a satisfactory model of your
data, you can try using a linear model with nonpolynomial terms. For
example, consider the following function that is linear in the parameters a,,
a,, and a,, but nonlinear in the ¢ data:

y=ag+ ale_t + azte_t

3-27



3 Regression Analysis

3-28

You can compute the unknown coefficients a, a;, and a, by constructing and
solving a set of simultaneous equations and solving for the parameters. The
following syntax accomplishes this by forming a design matrix, where each
column represents a variable used to predict the response (a term in the
model) and each row corresponds to one observation of those variables:

o°

Enter t and y as columnwise vectors

t=1000.30.81.11.62.3]";
y = [0.6 0.67 1.01 1.35 1.47 1.25]";
% Form the design matrix
X = [ones(size(t)) exp(-t) t.*exp(-t)l;
% Calculate model coefficients
a = X\y
a:

1.3983

- 0.8860
0.3085

Therefore, the model of the data is given by

y =1.3983-0.8860e" +0.3085¢¢ "

Now evaluate the model at regularly spaced points and plot the model with
the original data, as follows:

T = (0:0.1:2.5)";
Y [ones(size(T)) exp(-T) T.*exp(-T)]l*a;
plot(T,Y,'-',t,y,'0'), grid on



Programmatic Fitting

J Figure 1 =lal=|
-

File Edit View Insert Tools Deskbop “Window Help

L EIDEEEEINEEE

L8 : : : :

Linear Fit with Nonpolynomial Terms

Multiple Regression

When y is a function of more than one predictor variable, the matrix equations
that express the relationships among the variables must be expanded to
accommodate the additional data. This is called multiple regression.

Suppose you measure a quantity y for several values of x, and x,. Enter these
variables in the MATLAB Command Window, as follows:

x1 =[.2 .5 .6 .8 1.0 1.1]";
x2 = [.1 .3 .4 .9 1.1 1.4]";
y = [.17 .26 .28 .23 .27 .24]';

A model of this data is of the form

Y =ap tajxy +ag9xg

3-29



3 Regression Analysis

Multiple regression solves for unknown coefficientsa,, a,, and a, by
minimizing the sum of the squares of the deviations of the data from the
model (least-squares fit).

Construct and solve the set of simultaneous equations by forming a design
matrix, X, and solving for the parameters by using the backslash operator:

X = [ones(size(x1)) x1 x2];
a = X\y
a:

0.1018

0.4844

-0.2847

The least-squares fit model of the data is

y=0.1018+0.4844x; —0.2847x9

To validate the model, find the maximum of the absolute value of the deviation
of the data from the model:

Y = X*a;
MaxErr = max(abs(Y - y))

MaxErr =
0.0038

This value is much smaller than any of the data values, indicating that this
model accurately follows the data.

Example: Programmatic Fitting
In this example, you use MATLAB functions to accomplish the following:

e “Calculating Correlation Coefficients” on page 3-32
e “Fitting a Polynomial to the Data” on page 3-32
¢ “Plot and Calculate Confidence Bounds” on page 3-34

3-30



Programmatic Fitting

This example uses the data in census.mat, which contains U.S. population
data for the years 1790 to 1990.

To load and plot the data, type the following commands at the MATLAB
prompt:

load census
plot(cdate,pop,'ro')
This adds the following two variables to the MATLAB workspace:

® cdate is a column vector containing the years 1790 to 1990 in increments
of 10.

® pop is a column vector with the U.S. population numbers corresponding to
each year in cdate.

The following plot of the data shows a strong pattern, which indicates a high
correlation between the variables.

J Figure 1 ; i [m] S
File Edit Wiew Insert Tools Deskiop Window Help N~
W& h|aRads|e 08 FO
250
o]
200} o
— o]
o
s
= 180+ o] -
£
= o]
5 ©
= o}
% 100 o E
0 o}
o]
a0+ o E
o o]
00®
0 ool . .
1750 1800 1850 15900 1950 2000
‘fear

U.S. Population from 1790 to 1990

3-31



3 Regression Analysis

Calculating Correlation Coefficients

In this portion of the example, you determine the statistical correlation
between the variables cdate and pop to justify modeling the data. For more
information about correlation coefficients, see “Linear Correlation” on page
3-2.

Type the following syntax at the MATLAB prompt:

corrcoef(cdate,pop)

MATLAB calculates the following correlation-coefficient matrix:

ans =

—

.0000 0.9597
.9597 1.0000

o

The diagonal matrix elements represent the perfect correlation of each
variable with itself and are equal to 1. The off-diagonal elements are very
close to 1, indicating that there is a strong statistical correlation between
the variables cdate and pop.

Fitting a Polynomial to the Data

This portion of the example applies the polyfit and polyval MATLAB
functions to model the data:

% Calculate fit parameters
[p,ErrorEst] = polyfit(cdate,pop,2);

% Evaluate the fit

pop_fit = polyval(p,cdate,Errorkst);

% Plot the data and the fit
plot(cdate,pop_fit,'-',cdate,pop,'+');
% Annotate the plot
legend('Polynomial Model', 'Data');
xlabel('Census Year');
ylabel('Population (millions)');

3-32



Programmatic Fitting

The following figure shows that the quadratic-polynomial fit provides a good
approximation to the data:

J Figure 1 =10f x|
File Edit View Insert Tools Desktop ‘Window Help L
D& |RaAM9(E| 0@ =0
250
FPalynormial Model
+ Data
200 E
= 150¢ E
E
[y
=
= 100} E
o
(=]
o
a0 E
D 1 1 1
1750 1800 1850 1900 1950 2000
Census Year

Quadratic Polynomial Fit to the Census Data

To calculate the residuals for this fit, type the following syntax at the
MATLAB prompt:

res = pop - pop_Tit;
figure, plot(cdate,res,'+"')

3-33



3 Regression Analysis

3-34

<) Figure 2 o ] 4
File Edit View Insert Tools Desktop ‘Window Help L
DEH&EG FRaO (L0850
Residuals fram Second-Degree
Palynomial Fit
53 T T
4 + E
+
+
2 ot +1 b
e,
+ i
0 + +4 + +
+

2 + 1

At i

Gt i

+
4 . . . +
1750 1800 1850 1900 1950 2000

Residuals for the Quadratic Polynomial Model

Notice that the plot of the residuals exhibits a pattern, which indicates that a
second-degree polynomial might not be appropriate for modeling this data.

Plot and Calculate Confidence Bounds

Confidence bounds are confidence intervals for a predicted response. The
width of the interval indicates the degree of certainty of the fit.

This example applies polyfit and polyval to the census sample data to
produce confidence bounds for a second-order polynomial model.



Programmatic Fitting

The following syntax uses an interval of 2A, which corresponds to a 95%
confidence interval for large samples:

% Evaluate the fit and the prediction error estimate (delta)

[pop_fit,delta] = polyval(p,cdate,Errorkst);

% Plot the data, the fit, and the confidence bounds

plot(cdate,pop,'+',...
cdate,pop_fit,'g-"',...
cdate,pop_fit+2*delta,'r:',...
cdate,pop_fit-2*delta,'r:"');

% Annotate the plot

xlabel('Census Year');

ylabel('Population (millions)');

grid on

The 95% interval indicates that you have a 95% chance that a new observation
will fall within the bounds.

<) Figure 1 i ] 5|
“u

File Edit View Insert Tools Desktop Window Help

eI EEE R I EIE

o : ! : !
250
200
150

100

Papulation (rmillions)

a0

50 H I H I
1750 1800 1850 1900 1950 2000
Census Year

Quadratic Polynomial Fit with Confidence Bounds

3-35



3 Regression Analysis

3-36



Time Series Analysis

Introduction (p. 4-2) Introduction to time series analysis
Time Series Objects (p. 4-3) Programmatic time series analysis

Time Series Tools (p. 4-41) Interactive time series analysis



4 Tine Series Analysis

Introduction

Time series are data vectors sampled over time, in order, often at regular
intervals. They are distinguished from randomly sampled data, which

form the basis of many other data analyses. Time series represent the
time-evolution of a dynamic population or process. The linear ordering of
time series gives them a distinctive place in data analysis, with a specialized
set of techniques.

Time series analysis is concerned with:

¢ Identifying patterns
® Modeling patterns
¢ Forecasting values

Several dedicated MATLAB® functions perform time series analysis. This
section introduces objects and interactive tools for time series analysis.



Time Series Objects

Time Series Objects

In this section...

“Introduction” on page 4-3

“Time Series Data Sample” on page 4-4

“Example: Time Series Objects and Methods” on page 4-6
“Time Series Constructor” on page 4-21

“Time Series Methods” on page 4-31

“Time Series Collection Constructor” on page 4-35

“Time Series Collection Methods” on page 4-39

Introduction
MATLAB® time series objects are of two types:

® timeseries — Stores data and time values, as well as the metadata
information that includes units, events, data quality, and interpolation
method

® tscollection — Stores a collection of timeseries objects that share a
common time vector, convenient for performing operations on synchronized
time series with different units

This section discusses the following topics:

¢ Using time series constructors to instantiate time series classes

® Modifying object properties using set methods or dot notation

e (Calling time series functions and methods

To get a quick overview of programming with timeseries and tscollection

objects, follow the steps in “Example: Time Series Objects and Methods” on
page 4-6.



4 Tine Series Analysis

If you prefer to work with a graphical user interface (GUI), use MATLAB
Time Series Tools to work with time series data. For more information about
Time Series Tools, see “Example: Time Series Tools” on page 4-79.

Note If you are new to programming with timeseries and tscollection
objects, you might want to start by working with Time Series Tools and
enabling the Record M-Code feature. This generates reusable M-code
based on the operations you perform in the GUI. For more information, see
“Generating Reusable M-Code” on page 4-45.

Time Series Data Sample

To properly understand the description of timeseries object properties and
methods in this documentation, it is important to clarify some terms related
to storing data in a timeseries object—the difference between a data value
and a data sample.

A data value is a single, scalar value recorded at a specific time. A data
sample consists of one or more values associated with a specific time in the
timeseries object. The number of data samples in a time series is the same
as the length of the time vector.

For example, consider data that consists of three sensor signals: two signals
represent the position of an object in meters, and the third represents its

velocity in meters/second.

To enter the data matrix, type the following at the MATLAB prompt:

X = [-0.2 -0.3 13;
0.1 -0.4 15;
NaN 2.8 17;
0.5 0.3 NaN;
0.3 -0.1 15]



Time Series Objects

The NaN value represents a missing data value. MATLAB displays the
following 5-by-3 matrix:

X=
-0.2000 -0.3000 13.0000
-0.1000 -0.4000 15.0000
NaN 2.8000 17.0000
0.5000 0.3000 NaN
-0.3000 -0.1000 15.0000

The first two columns of x contain quantities with the same units and

you can create a multivariate timeseries object to store these two time
series. For more information about creating timeseries objects, see “Time
Series Constructor Syntax” on page 4-23. The following command creates a
timeseries object ts_pos to store the position values:

ts_pos = timeseries(x(:,1:2), 1:5, 'name', 'Position')
MATLAB responds by displaying the following properties of ts_pos:
Time Series Object: Position

Time vector characteristics

Length 5
Start time 1 seconds
End time 5 seconds

Data characteristics

Interpolation method 1linear
Size [5 2]
Data type double



4 Tine Series Analysis

The Length of the time vector, which is 5 in this example, equals the number
of data samples in the timeseries object. Find the size of the data sample in
ts_pos by typing the following at the MATLAB prompt:

getdatasamplesize(ts_pos)
ans =
1 2
Similarly, you can create a second timeseries object to store the velocity data:
ts_vel = timeseries(x(:,3), 1:5, 'name', 'Velocity');
Find the size of each data sample in ts_vel by typing the following:

getdatasamplesize(ts_vel)
ans =
1 1

Notice that ts_vel has one data value in each data sample and ts_pos has
two data values in each data sample.

Note In general, when the time series data is an M-by-N-by-P-by-...
multidimensional array with M samples, the size of each data sample is
N-by-P-by-... .

If you want to perform operations on the ts_pos and ts_vel timeseries
objects while keeping them synchronized, group them in a time series
collection. For more information, see “Time Series Collection Constructor
Syntax” on page 4-35.

Example: Time Series Objects and Methods

® “Creating Time Series Objects” on page 4-7

¢ “Viewing Time Series Objects” on page 4-9



Time Series Objects

® “Modifying Time Series Units and Interpolation Method” on page 4-12

® “Defining Events” on page 4-13

® “Creating Time Series Collection Objects” on page 4-14

¢ “Resampling a Time Series Collection Object” on page 4-15

¢ “Adding a Data Sample to a Time Series Collection Object” on page 4-16
* “Removing and Interpolating Missing Data” on page 4-17

* “Removing a Time Series from a Time Series Collection” on page 4-19

® “Changing a Numerical Time Vector to Date Strings” on page 4-19

® “Plotting Time Series Collection Members” on page 4-20

Creating Time Series Objects

This portion of the example illustrates how to create several timeseries
objects from an array. For more information about the timeseries object, see
“Time Series Constructor” on page 4-21.

The sample data provided with this example consists of a 24-by-3 matrix
of double values, where each column represents the hourly traffic counts

at three town intersections.

This adds the variable count to the MATLAB workspace:

%% Import the sample data
load count.dat

To view the count matrix, type

count

4-7



4 Tine Series Analysis

MATLAB displays the following 24-by-3 matrix:

11 11 9
7 13 11
14 17 20
11 13 9
43 51 69
38 46 76
61 132 186
75 135 180
38 88 115
28 36 55
12 12 14
18 27 30
18 19 29
17 15 18
19 36 48
32 47 10
42 65 92
57 66 151
44 55 90
114 145 257
35 58 68
11 12 15
13 9 15
10 9 7



Time Series Objects

Create three timeseries objects to store the data collected at each
intersection:

countl = timeseries(count(:,1), 1:24,'name', 'intersectioni');
count2 = timeseries(count(:,2), 1:24,'name', 'intersection2');
count3 = timeseries(count(:,3), 1:24,'name', 'intersection3');

Note In the above construction, timeseries objects have both a variable
name (e.g., count1) and an internal object name (e.g., intersectiont).

The variable name is used with MATLAB functions. The object name is a
property of the object, accessed with object methods. For more information on
timeseries object properties and methods, see “Time Series Properties” on
page 4-24 and “Time Series Methods” on page 4-31.

Each time series has a time vector in units of seconds, starting at 1 second and
increasing up to 24 seconds in 1-second increments. The software assumes
this increment when you do not explicitly specify one. You will change

the time units to hours in “Modifying Time Series Units and Interpolation
Method” on page 4-12.

Note If you want to create a timeseries object that groups the three data
columns in count, use the following syntax:

count_ts = timeseries(count, 1:24,'name', 'traffic_counts')

This is useful when all time series have the same units and you want to keep
them synchronized during calculations.

Viewing Time Series Objects

After creating a timeseries object, as described in “Creating Time Series
Objects” on page 4-7, you can view it in either the Variable Editor or “Time
Series Tools” on page 4-41.

To view a timeseries object like count1 in the Variable Editor, use any one of
several methods:



4 Tine Series Analysis

4-10

Type open('count1') at the command prompt.

Select count1 in the Workspace Browser and click the Open selection
button .

Double-click count1 in the Workspace Browser.

Right-click count1 in the Workspace Browser and select Open selection
from the context menu.

To view count1 in Time Series Tools, right-click count1 in the Workspace
Browser and choose Open in Time Series Tools from the context menu.

When a timeseries object is opened in either the Variable Editor or Time
Series Tools, it is displayed with the Time Series Editor:



Time Series Objects

[y}

|

. u
14
. u
T
I
e
s
@
=
I
I
19
I
a2
[

[
=

For information on using the Time Series Editor, see “Editing Data and
Time” on page 4-71.

4-11



4 Tine Series Analysis

4-12

Modifying Time Series Units and Interpolation Method

After creating a timeseries object, as described in “Creating Time Series
Objects” on page 4-7, you can modify its units and interpolation method using
dot notation.

To view the current properties of count1, type

get(countl)

MATLAB responds by displaying the current property values of the count1
timeseries object:

Events: []

Name: 'intersectioni'

Data: [24x1 double]

DataInfo: [1x1 tsdata.datametadata]
Time: [24x1 double]

TimeInfo: [1x1 tsdata.timemetadatal]
Quality: []

QualityInfo: [1x1 tsdata.qualmetadata]
IsTimeFirst: true

TreatNaNasMissing: true

To view the current DataInfo properties, use dot notation:

counti.Datalnfo

Change the data units and the default interpolation method for count1, as
follows:

counti.DataInfo.Units = 'cars';
% Specify new data units
counti.DataInfo.Interpolation = tsdata.interpolation('zoh');
% Set the interpolation method to zero-order hold

To verify that the DataInfo properties have been modified, type

counti.DatalInfo



Time Series Objects

MATLAB confirms the change by displaying
Time Series Data Meta Data Object

Unit cars
Interpolation Method =zoh

Modify the time units to be 'hours' for the three time series:

counti.TimeInfo.Units = 'hours';
count2.TimeInfo.Units = 'hours';
count3.TimeInfo.Units = 'hours';

Defining Events

This portion of the example illustrates how to define events for a timeseries
object by using the tsdata.event auxiliary object. Events mark the data at
specific times. When you plot the data, event markers are displayed on the
plot. Events also provide a convenient way to synchronize multiple time series.

Use the following syntax to add two events to the data that mark the times of
the AM commute and PM commute:

%% Construct and add the first event to all time series
el = tsdata.event('AMCommute',8);

% Construct the first event at 8 AM
el1.Units = 'hours'; % Specify the time units of the time
count1 addevent(counti,el); % Add the event to counti
count2 = addevent(count2,el); Add the event to count2
count3 addevent(count3,el1); % Add the event to count3
%% Construct and add the second event to all time series
e2 = tsdata.event('PMCommute',18);

% Construct the first event at 6 PM
e2.Units = 'hours'; % Specify the time units of the time
count1l = addevent(counti,e2); % Add the event to countt
count2 = addevent(count2,e2); Add the event to count2
count3 addevent (count3,e2); Add the event to count3

Il
o°

|
o°

o°

4-13



4 Tine Series Analysis

4-14

Creating Time Series Collection Objects

This portion of the example illustrates how to create a tscollection object.
Each individual time series in a collection is called a member. For more
information about the tscollection object, see “Time Series Collection
Constructor” on page 4-35.

Note Typically, you use the tscollection object to group synchronized time
series that have different units. In this simple example, all time series have
the same units and the tscollection object does not provide an advantage
over grouping the three time series in a single timeseries object. For an
example of how to group several time series in one timeseries object, see
“Creating Time Series Objects” on page 4-7.

Use the following syntax to create a tscollection object named count coll
and use the constructor syntax to immediately add two of the three time series
currently in the MATLAB workspace (you will add the third time series later):

tsc = tscollection({count1 count2}, 'name', 'count_coll')
MATLAB responds with

Time Series Collection Object: count_coll
Time vector characteristics

Start time 1 hours

End time 24 hours

Member Time Series Objects:
intersectioni
intersection2

Note The time vectors of the timeseries objects you are adding to the
tscollection must match.

Notice that the Name property of the timeseries objects is used to name the
collection members as intersectioni and intersection2.



Time Series Objects

Add the third timeseries object in the workspace to the tscollection by
using the following syntax:

tsc = addts(tsc, count3)

All three members in the collection are listed:

Time Series Collection Object: count_coll
Time vector characteristics

Start time 1 hours

End time 24 hours

Member Time Series Objects:
intersectioni
intersection2
intersection3

Resampling a Time Series Collection Object

This portion of the example illustrates how to resample each member in a
tscollection using a new time vector. The resampling operation is used to
either select existing data at specific time values, or to interpolate data at
finer intervals. If the new time vector contains time values that did not exist
in the previous time vector, the new data values are calculated using the
default interpolation method you associated with the time series.

To resample the time series to include data values every 2 hours instead of
every hour and save it as a new tscollection object, enter the following
syntax:

tsc1 = resample(tsc,1:2:24)

In some cases you might need a finer sampling of information than you
currently have and it is reasonable to obtain it by interpolating data values.
For example, the following syntax interpolates values at each half-hour mark:

tsc1 = resample(tsc,1:0.5:24)
To add values at each half-hour mark, the default interpolation method of

a time series is used. For example, the new data points in intersection1
are calculated by using the zero-order hold interpolation method, which

4-15



4 Tine Series Analysis

holds the value of the previous sample constant. You set the interpolation
method for intersectioni as described in “Modifying Time Series Units and
Interpolation Method” on page 4-12.

The new data points in intersection2 and intersection3 are calculated
using linear interpolation, which is the default method.

Adding a Data Sample to a Time Series Collection Object

This portion of the example illustrates how to add a data sample to a
tscollection.

You can use the following syntax to add a data sample to the intersection1
collection member at 3.25 hours (i.e., 15 minutes after the hour):

tsc1 = addsampletocollection(tsci1, 'time',3.25,...
‘intersectiont’',5)

There are three members in the tsc1 collection, and adding a data sample
to one member adds a data sample to the other two members at 3.25 hours.
However, because you did not specify the data values for intersection2
and intersection3 in the new sample, the missing values are represented
by NaNs for these members. To learn how to remove or interpolate missing
data values, see “Removing Missing Data” on page 4-17 and “Interpolating
Missing Data” on page 4-18.

tsc1 Data from 2.0 to 3.5 Hours

4-16

Hours Intersection 1 Intersection 2 Intersection 3
2.0 7 13 11

2.5 7 15 15.5

3.0 14 17 20

3.25 5 NaN NaN

3.5 14 15 14.5

tsc1.intersectioni

To view all intersection1 data (including the new sample at 3.25 hours), type



Time Series Objects

Similarly, to view all intersection2 data (including the new sample at 3.25
hours containing a NaN value), type

tsc1.intersection2

Removing and Interpolating Missing Data

Missing data in a time series are represented by NaNs. This portion of the
example illustrates how to either remove the missing data or interpolate it by
using the interpolation method you specified for that time series. In “Adding a
Data Sample to a Time Series Collection Object” on page 4-16, you added a
new data sample to the tsc1 collection at 3.25 hours.

There are three members in the tsc1 collection, and adding a data sample
to one member adds a data sample to the other two members at 3.25 hours.
However, because you did not specify the data values for the intersection2
and intersection3 members at 3.25 hours, they currently contain missing
values that are represented by NaNs.

Removing Missing Data. You can use the following syntax to find and
remove the data samples containing NaN values in the tsc1 collection:

tsc1 = delsamplefromcollection(tsci1, 'index’',...
find(isnan(tsci1.intersection2.Data)));

This command searches one tscollection member at a time—in this case,
intersection2. When a missing value is located in intersection2, the data
at that time is removed from a/l members of the tscollection.

Note You can use the following dot-notation syntax to access the Data
property of the intersection2 member in the tsc1 collection:

tsc1.intersection2.Data

For a complete list of timeseries properties, see “Time Series Properties”
on page 4-24.

4-17



4 Tine Series Analysis

4-18

Interpolating Missing Data. For the sake of this example, you must
reintroduce NaN values in intersection2 and intersection3 (which you
removed):

tsc1 = addsampletocollection(tsc1,'time',3.25,...
‘intersectiont’,5);

To interpolate the missing values in tsc1 using the current time vector
(tsc1.Time), type the following syntax:

tsc1 = resample(tsci,tsc1.Time)

This replaces the NaN values in intersection2 and intersection3 by using
linear interpolation—the default interpolation method for these time series.

Note Dot notation tsc1.Time is used to access the Time property of the tsc1
collection. For a complete list of tscollection properties, see “T'ime Series
Collection Properties” on page 4-37.

To view intersection2 data after interpolation, for example, type

tsci.intersection2

New tsc1 Data from 2.0 to 3.5 Hours

Hours Intersection 1 Intersection 2 Intersection 3
2.0 7 13 11

2.5 7 15 15.5

3.0 14 17 20

3.25 5 16 17.3

3.5 14 15 14.5




Time Series Objects

Removing a Time Series from a Time Series Collection

To remove the intersection3 time series from the tscollection object
tsci, type:

tsc1 = removets(tscl, 'intersection3')

Two time series as members in the collection are now listed:

Time Series Collection Object: count_coll
Time vector characteristics

Start time 1 hours

End time 24 hours

Member Time Series Objects:
intersectioni
intersection2

Changing a Numerical Time Vector to Date Strings

This portion of the example illustrates how to convert the display format of
a numerical time vector to MATLAB date strings. For a complete list of the
MATLAB date-string formats supported for timeseries and tscollection
objects, see “Time Vector Format” on page 4-22.

To convert a numerical time vector to date strings, you must set the StartDate
field of the TimeInfo property. All values in the time vector are converted to
date strings using StartDate as a reference date.

For example, suppose the reference date occurs on December 25, 2004:

tsc1.TimeInfo.StartDate = 'DEC-25-2004 00:00:00';

To verify that the time vector now uses date strings, type the following
command to look at the sixth element of the intersection2 member:

tsci.intersection2(6)

4-19



4 Tine Series Analysis

MATLAB responds with

Time Series Object: unnamed
Time vector characteristics

Length 1
Start date 25-Dec-2004 03:15:00
End date 25-Dec-2004 03:15:00

Data characteristics
Interpolation method 1linear

Size [1 1]

Data type double
Time Data Quality
25-Dec-2004 03:15:00 16

This result shows that the sixth element of intersection2 has an
interpolated data value of 16 cars at 3.25 hours (or 3:15:00).

Plotting Time Series Collection Members

You can plot the two remaining members in the tsc1 collection by using the
following command sequence:

plot(tsci.intersectiont); hold on;
plot(tsci.intersection2)

4-20



Time Series Objects

2} Figure 1 =1Of x|
File Edit View Insert Tools Desktop ‘Window Help "
Ded& h|tame (€ 08| 80
Time Series Plat
150 T
100 + 1
]
£
=]
&
3
E
50 1
D 1
25-Dec-2004 00:00:00 25-Dec-2004 12:30:00 26-Dec-2004 01:00:00
Time (hours)

Time Plot of Two Time Series in a Collection

This plot shows the two time series in the collection: intersection1 and
intesection2. intersectioni uses the zero-order hold interpolation method
and therefore has a jagged curve. In contrast, intersection2 uses a linear
interpolation method. The vertical axis is labeled as intersection2 because
this was the last time series plotted.

The filled circles on the plot indicate events, as specified in “Defining Events”
on page 4-75.

Time Series Constructor

¢ “Time Vector Format” on page 4-22
¢ “Time Series Constructor Syntax” on page 4-23

e “Time Series Properties” on page 4-24

4-21



4 Tine Series Analysis

4-22

Time Vector Format

You can specify the time vector of the timeseries object either as numerical
(double) values or as valid MATLAB date strings.

When the timeseries TimeInfo.StartDate property is empty, the numerical
Time values are measured relative to O (or another numerical value) in
specified units. In this case, the time vector is described as relative (that is, it
contains time values that are not associated with a specific start date).

When TimeInfo.StartDate is nonempty, the time values are date strings
measured relative to StartDate in specified units. In this case, the time
vector is described as absolute (that is, it contains time values that are
associated with a specific calendar date). For more information, see “Time

Series Properties” on page 4-24.

MATLAB supports the following date-string formats for time series

applications.

Date-String Format

Usage Example

dd-mmm-yyyy HH:MM:SS

01-Mar-2000 15:45:17

dd-mmm-yyyy 01-Mar-2000

mm/dd/yy 03/01/00

mm/dd 03/01

HH:MM:SS 15:45:17

HH:MM:SS PM 3:45:17 PM

HH : MM 15:45

HH:MM PM 3:45 PM

mmm.dd,yyyy HH:MM:SS Mar.01,2000 15:45:17
mmm.dd,yyyy Mar.01,2000
mm/dd/yyyy 03/01/2000




Time Series Objects

Time Series Constructor Syntax

Before implementing the various MATLAB functions and methods specifically
designed to handle time series data, you must create a timeseries object
to store the data.

The following table summarizes the syntax when using the timeseries
constructor. For an example of using the constructor, see “Creating Time

Series Objects” on page 4-7.

Time Series Syntax Descriptions

Syntax Description

ts = timeseries Creates an empty timeseries
object. The size of this object is
0-by-1.

ts = timeseries(Data) Creates a timeseries object with

the specified Data.

ts has a default time vector
ranging from 0 to N-1 with 1-second
increments, where N is the number
of samples. The default name of the
timeseries object is 'unnamed'.

ts timeseries('Name') Creates an empty timeseries
object with the name specified

by a string Name. This name can
differ from the timeseries variable

name.

ts = timeseries(Data,Time) Creates a timeseries object with

the specified Data array and Time.

When time values are date strings,
you must specify Time as a cell
array of date strings.

4-23



4 Tine Series Analysis

Time Series Syntax Descriptions (Continued)

Syntax Description
ts = The Quality attribute is an integer
timeseries(Data,Time,Quality) vector containing values -128

to 127 that specifies the quality
in terms of codes defined by
QualityInfo.Code.

For more information about
QualityInfo, see “Time Series
Properties” on page 4-24.

ts = timeseries(Data,..., Optionally enter the following
'Parameter',Value,...) parameter-value pairs after
the Data, Time, and Quality
arguments. You can specify the
following parameters:

e Name

® IsTimeFirst

e TsDatenum

Name and IsTimeFirst are

described in “Time Series
Properties” on page 4-24.

When set to true, IsDatenum
specifies that Time values are dates
in the format of MATLAB serial
dates.

Time Series Properties

The following table lists the properties of the timeseries object. You can
specify the Data, IsTimeFirst, Name, Quality, and Time properties as input
arguments in the constructor. To assign other properties, use the set function
or dot notation.

4-24



Time Series Objects

Note To get property information from the command line, type help
timeseries/tsprops at the MATLAB prompt.

For an example of editing timeseries object properties, see “Modifying Time
Series Units and Interpolation Method” on page 4-12.

Time Series Property Descriptions

Property Description

Data Time series data, where each data sample
corresponds to a specific time.

The data can be a scalar, a vector, or a
multidimensional array. Either the first or last
dimension of the data must align with Time.

By default, NaNs represent missing or unspecified
data. Set the TreatNaNasMissing property

to determine how missing data is treated in
calculations.

4-25



4 Tine Series Analysis

Time Series Property Descriptions (Continued)

Property Description
DataInfo Contains fields for storing contextual information
about Data:

® Unit — String that specifies data units.

® Interpolation — A tsdata.interpolation
object that specifies the interpolation method for
this time series.

Fields in the tsdata.interpolation object
include:

= Fhandle: Function handle to a user-defined
interpolation function.

= Name: String that specifies the name of the
interpolation method. Predefined interpolation
methods include 'linear' and 'zoh'
(zero-order hold). 'linear’ is the default.

® UserData — Any user-defined information
entered as a string.

4-26



Time Series Objects

Time Series Property Descriptions (Continued)

Property

Description

Events

An array of tsdata.event objects that stores event
information for this timeseries object. You add
events using the addevent method.

Fields in the tsdata.event object include the

following:

e EventData — Any user-defined information about
the event

® Name — String that specifies the name of the event

e Time — Time value when this event occurs,
specified as a real number or a date string relative
to StartDate

® Units — Time units

e StartDate — A reference date specified in
MATLAB date string format. StartDate is empty
when you have a numerical time vector.

4-27



4 Tine Series Analysis

Time Series Property Descriptions (Continued)

Property

Description

IsTimeFirst

Logical value (true or false) that specifies whether
the first or last dimension of the Data array aligns
with the time vector.

You can set this property when the Data array is
square and it is ambiguous which dimension aligns
with time. By default, the first Data dimension that
matches the length of the time vector is aligned with
Time.

When you set this property to

® true, the first dimension of the data array is
aligned with the time vector.

e false, the last dimension of the data array is

aligned with the time vector.

After a time series is created, this property is
read-only.

Name

timeseries object name entered as a string. This
name can differ from the name of the timeseries
variable in the MATLAB workspace.

Quality

An integer vector or array containing values -128
to 127 that specifies the quality in terms of codes
defined by the QualityInfo.Code field.

When Quality is a vector, it must have the same
length as the time vector. In this case, each Quality
value applies to the corresponding data sample.

When Quality is an array, it must have the same
size as the data array. In this case, each Quality
value applies to the corresponding value of the data
array.

4-28



Time Series Objects

Time Series Property Descriptions (Continued)

Property

Description

QualityInfo

Provides a lookup table that converts numerical
Quality codes to readable descriptions.
QualityInfo fields include the following:

e Code — Integer vector containing values -128 to
127 that defines the “dictionary” of quality codes,
which you can assign to each Data value by using
the Quality property

® Description — Cell vector of strings, where each
element provides a readable description of the
associated quality Code

® UserData — Stores any additional user-defined
information

The length of Code and Description must match.

Time

Vector of time values.

When TimeInfo.StartDate is empty, the numerical
Time values are measured relative to 0 in specified
units. When TimeInfo.StartDate is defined, the
time values are date strings measured relative to
StartDate in specified units.

The length of Time must match either the first or
the last dimension of Data.

4-29



4 Tine Series Analysis

Time Series Property Descriptions (Continued)

Property

Description

TimeInfo

Uses the following fields to store contextual
information about Time:

¢ Units — Time units with the following
values: 'weeks', 'days', 'hours', 'minutes’,
‘seconds', 'milliseconds’, 'microseconds’,
and 'nanoseconds’

® Start — Start time
® End — End time (read-only)

® Increment — Interval between two subsequent
time values

® Length — Length of the time vector (read-only)

® Format — String defining the date string display
format. See the MATLAB datestr function
reference page for more information.

e StartDate — Date string defining the
reference date. See the MATLAB setabstime
(timeseries) function reference page for more
information.

® UserData — Stores any additional user-defined
information

TreatNaNasMissing

Logical value that specifies how to treat NaN values
in Data:

¢ true — (Default) Treat all NaN values as missing
data except during statistical calculations.

e false — Include NaN values in statistical
calculations, in which case NaN values are
propagated to the result.

4-30


file:///B:/matlab/doc/src/toolbox/matlab/ref/setabstimetimeseries.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/setabstimetimeseries.html

Time Series Objects

Time Series Methods

® “General Methods” on page 4-31

¢ “Data and Time Manipulation Methods” on page 4-32
e “Event Methods” on page 4-33

e “Arithmetic Operation Methods” on page 4-34

e “Statistical Methods” on page 4-34

General Methods

Use the following methods to query and set object properties, and plot the

data.

Methods for Querying Properties

Method

Description

get (timeseries)

Query timeseries object property values.

getdatasamplesize Return the size of each data sample in a
timeseries object.
getqualitydesc Return data quality descriptions based on

the Quality property values assigned to a
timeseries object.

isempty (timeseries)

Evaluate to true for an empty timeseries
object.

length (timeseries)

Return the length of the time vector.

plot (timeseries)

Plot the timeseries object.

set (timeseries)

Set timeseries property values.

size (timeseries)

Return the size property of a timeseries
object.

tstool

Open the Time Series Tools GUI.

4-31


file:///B:/matlab/doc/src/toolbox/matlab/ref/gettimeseries.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/isemptytimeseries.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/lengthtimeseries.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/plottimeseries.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/settimeseries.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/sizetimeseries.html

4 Tine Series Analysis

4-32

Data and Time Manipulation Methods
Use the following methods to add or delete data samples, and manipulate

the timeseries object.

Methods for Manipulating Data and Time

Method Description

addsample Add a data sample to a timeseries object.
ctranspose Transpose a timeseries object.
(timeseries)

delsample Delete a sample from a timeseries object.

detrend (timeseries)

Subtract the mean or best-fit line and remove
all NaNs from time series data.

filter (timeseries)

Shape frequency content of time series data
using a 1-D digital filter.

getabstime Extract a date-string time vector from a

(timeseries) timeseries object into a cell array.

getinterpmethod Get the interpolation method for a timeseries
object.

getsampleusingtime Extract specified data samples from an

(timeseries) existing timeseries object into a new
timeseries object.

idealfilter Apply an ideal pass or notch (noncausal) filter

(timeseries) to a timeseries object.

resample (timeseries)

Select or interpolate data in a timeseries
object using a new time vector.

setabstime Set the time values in the time vector as date

(timeseries) strings.

setinterpmethod Set interpolation method for a timeseries
object.

synchronize Synchronize and resample two timeseries

objects using a common time vector.



file:///B:/matlab/doc/src/toolbox/matlab/ref/ctransposetimeseries.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/ctransposetimeseries.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/detrendtimeseries.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/filtertimeseries.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/getabstimetimeseries.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/getabstimetimeseries.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/getsampleusingtimetimeseries.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/getsampleusingtimetimeseries.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/idealfiltertimeseries.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/idealfiltertimeseries.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/resampletimeseries.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/setabstimetimeseries.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/setabstimetimeseries.html

Time Series Objects

Methods for Manipulating Data and Time (Continued)

Method

Description

transpose (timeseries)

Transpose a timeseries object.

vertcat (timeseries)

Vertical concatenation for timeseries objects.

Event Methods

To construct an event object, use the constructor tsdata.event. For an
example of defining events for a time series, see “Defining Events” on page

4-75.

Methods That Define and Use Events

Method Description

addevent Add one or more events to a timeseries
object.

delevent Delete one or more events from a timeseries
object.

gettsafteratevent Create a new timeseries object by extracting
the samples from an existing time series that
occur after or at a specified event.

gettsafterevent Create a new timeseries object by extracting
the samples that occur after a specified event
from an existing time series.

gettsatevent Create a new timeseries object by extracting
the samples that occur at the same time as a
specified event from an existing time series.

gettsbeforeatevent Create a new timeseries object by extracting

the samples that occur before or at a specified
event from an existing time series.

4-33


file:///B:/matlab/doc/src/toolbox/matlab/ref/transposetimeseries.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/vertcattimeseries.html

4 Tine Series Analysis

Methods That Define and Use Events (Continued)

Method Description

gettsbeforeevent Create a new timeseries object by extracting
the samples that occur before a specified event
from an existing time series.

gettsbetweenevents Create a new timeseries object by extracting
the samples that occur between two specified
events from an existing time series.

Arithmetic Operation Methods
Use the following operators to arithmetically combine timeseries objects.

Methods to Arithmetically Combine Time Series

Operation Description
+ Add the corresponding data values of timeseries
objects.

. Subtract the corresponding data values of
timeseries objects.

L8 Element-by-element multiplication of timeseries
data.

* Matrix-multiply timeseries data.

v Right element-by-element division of timeseries
data.

/ Right matrix division of timeseries data.

o\ Element-by-element left-array divide of timeseries
data.

\ Left matrix division of timeseries data.

Statistical Methods
Use the following methods to calculate descriptive statistics for a timeseries
object.

4-34



Time Series Objects

Methods for Calculating Descriptive Statistics

Method Description

igr (timeseries) Return the interquartile range of timeseries data.

max (timeseries) Return the maximum value of timeseries data.

mean (timeseries) | Return the mean of timeseries data.

median Return the median of timeseries data.
(timeseries)

min (timeseries) Return the minimum of timeseries data.

std (timeseries) Return the standard deviation of timeseries data.
sum (timeseries) Return the sum of timeseries data.

var (timeseries) Return the variance of timeseries data.

Time Series Collection Constructor

¢ “Introduction” on page 4-35
¢ “Time Series Collection Constructor Syntax” on page 4-35

e “Time Series Collection Properties” on page 4-37

Introduction

The MATLAB object, called tscollection, is a MATLAB variable that groups
several time series with a common time vector. The timeseries objects that
you include in the tscollection object are called members of this collection,
and possess several methods for convenient analysis and manipulation of
timeseries.

Time Series Collection Constructor Syntax

Before you implement the MATLAB methods specifically designed to operate
on a collection of timeseries objects, you must create a tscollection object
to store the data.

4-35


file:///B:/matlab/doc/src/toolbox/matlab/ref/iqrtimeseries.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/maxtimeseries.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/meantimeseries.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/mediantimeseries.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/mediantimeseries.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/mintimeseries.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/stdtimeseries.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/sumtimeseries.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/vartimeseries.html

4 Tine Series Analysis

4-36

The following table summarizes the syntax for using the tscollection
constructor. For an example of using this constructor, see “Creating Time
Series Collection Objects” on page 4-14.

Time Series Collection Syntax Descriptions

Syntax

Description

tsc = tscollection(ts)

Creates a tscollection object tsc that
includes one or more timeseries objects.

The ts argument can be one of the

following:

e Single timeseries object in the
MATLAB workspace

¢ (Cell array of timeseries objects in the
MATLAB workspace

The timeseries objects share the same
time vector in the tscollection.

tsc tscollection(Time)

Creates an empty tscollection object
with the time vector Time.

When time values are date strings, you
must specify Time as a cell array of date
strings.

tsc = tscollection(Time,
TimeSeries, 'Parameter’,
Value, ...)

Optionally enter the following
parameter-value pairs after the
Time and TimeSeries arguments:

e Name (see “Time Series Collection
Properties” on page 4-37)

e IsDatenum

When set to true, IsDatenum specifies

that Time values are dates in the format
of MATLAB serial dates.




Time Series Objects

Time Series Collection Properties

This table lists the properties of the tscollection object. You can specify the
Name, Time, and TimeInfo properties as input arguments in the tscollection
constructor.

Time Series Collection Property Descriptions

Property Description

Name tscollection object name entered as a string. This
name can differ from the name of the tscollection
variable in the MATLAB workspace.

4-37



4 Tine Series Analysis

Time Series Collection Property Descriptions (Continued)

Property

Description

Time

A vector of time values.

When TimeInfo.StartDate is empty, the numerical
Time values are measured relative to 0 in specified
units. When TimeInfo.StartDate is defined, the time
values represent date strings measured relative to
StartDate in specified units.

The length of Time must match either the first or
the last dimension of the Data property of each
tscollection member.

TimeInfo

Uses the following fields to store contextual information
about Time:

¢ Units — Time units with the following
values: 'weeks', 'days', 'hours', 'minutes’,
'seconds', 'milliseconds', 'microseconds', and
'nanoseconds’

e Start — Start time
¢ End — End time (read-only)

e Increment — Interval between two subsequent time
values. The increment is NaN when times are not
uniformly sampled.

¢ Length — Length of the time vector (read-only)

® Format — String defining the date string display
format. See the MATLAB datestr function
reference page for more information.

e StartDate — Date string defining the reference
date. See the MATLAB setabstime (timeseries)
function reference page for more information.

e UserData — Stores any additional user-defined
information

4-38


file:///B:/matlab/doc/src/toolbox/matlab/ref/setabstimetimeseries.html

Time Series Objects

Time Series Collection Methods
¢ “General Time Series Collection Methods” on page 4-39

¢ “Data and Time Manipulation Methods” on page 4-39

General Time Series Collection Methods

Use the following methods to query and set object properties, and plot the
data.

Methods for Querying Properties

Method Description

get (tscollection) Query tscollection object property values.

isempty (tscollection) Evaluate to true for an empty tscollection
object.

length (tscollection) Return the length of the time vector.

plot (timeseries) Plot the time series in a collection.

set (tscollection) Set tscollection property values.

size (tscollection) Return the size of a tscollection object.

tstool Open the Time Series Tools GUI.

Data and Time Manipulation Methods

Use the following methods to add or delete data samples, and manipulate the
tscollection object.

Methods for Manipulating Data and Time

Method Description

addts Add a timeseries object to a tscollection
object.

addsampletocollection Add data samples to a tscollection object.

4-39


file:///B:/matlab/doc/src/toolbox/matlab/ref/gettscollection.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/isemptytscollection.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/lengthtscollection.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/plottimeseries.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/settscollection.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/sizetscollection.html

4 Tine Series Analysis

4-40

Methods for Manipulating Data and Time (Continued)

Method

Description

delsamplefromcollection

Delete one or more data samples from a
tscollection object.

getabstime Extract a date-string time vector from a

(tscollection) tscollection object into a cell array.

getsampleusingtime Extract data samples from an existing

(tscollection) tscollectionobject into a new
tscollection object.

gettimeseriesnames Return a cell array of time series names in a

tscollection object.

horzcat (tscollection)

Horizontal concatenation of tscollection
objects. Combines several timeseries
objects with the same time vector into one
time series collection.

removets

Remove one or more timeseries objects
from a tscollection object.

resample (tscollection)

Select or interpolate data in a tscollection
object using a new time vector.

setabstime Set the time values in the time vector of a
(tscollection) tscollection object as date strings.
settimeseriesnames Change the name of the selected timeseries

object in a tscollection object.

vertcat (tscollection)

Vertical concatenation of tscollection
objects. Joins several tscollection objects
along the time dimension.



file:///B:/matlab/doc/src/toolbox/matlab/ref/getabstimetscollection.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/getabstimetscollection.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/getsampleusingtimetscollection.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/getsampleusingtimetscollection.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/horzcattscollection.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/resampletscollection.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/setabstimetscollection.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/setabstimetscollection.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/vertcattscollection.html

Time Series Tools

Time Series Tools

In this section...

“Introduction” on page 4-41

“Importing and Exporting Data” on page 4-46

“Plotting Time Series” on page 4-52

“Selecting Data for Analysis” on page 4-66

“Editing Data, Time, Attributes, and Events” on page 4-69

“Processing and Manipulating Time Series” on page 4-78

“Example: Time Series Tools” on page 4-79

Introduction

® “Opening Time Series Tools” on page 4-41
* “Getting Help” on page 4-42

e “Time Series Tools Window” on page 4-43

¢ “Time Series Tools Workflow” on page 4-44
® “Generating Reusable M-Code” on page 4-45

Opening Time Series Tools
To open Time Series Tools, type the following at the MATLAB® prompt:

tstool

You can also open Time Series Tools using the MATLAB Start button by
selecting Start > MATLAB > Time Series Tools.

For a description of the Time Series Tools GUI, see “Time Series Tools” on
page 4-41.

To learn how to import data into Time Series Tools, see “Importing and
Exporting Data” on page 4-46.

4-41



4 Tine Series Analysis

4-42

You can also start Time Series Tools and simultaneously import the following
kinds of objects from the MATLAB workspace:

* timeseries

® tscollection

¢ Simulink® logged signals

Note You cannot import Simulink logged signals that contain a / in their
Name property at any point in the signal hierarchy.

Syntax for Loading Data from the MATLAB® Workspace

MATLAB Object Syntax Description

timeseries tstool(tsname) | tsname is the name of a
timeseries object.

tscollection tstool(tscname) | tscname is the name of a
tscollection object.

Simulink tstool(sldata) | sldata is the name of a signal

logged-signal data logged in a Simulink model.

Getting Help

Time Series Tools provides extensive context-sensitive help directly from
the GUIL

In the Time Series Tools window, the context-sensitive help pane is available
on the right to assist you with the primary tasks. To toggle between displaying

or hiding the help pane, click the %l (Help) button in the toolbar. You can
resize the help pane by dragging the vertical divider to the left or to the right.

Context-sensitive help is also available via the Help button in Time Series
Tools dialog boxes.


http://www.mathworks.com/access/helpdesk/help/toolbox/simulink/ug/?f15-14248.html
http://www.mathworks.com/access/helpdesk/help/toolbox/simulink/ug/?f15-14248.html

Time Series Tools

Time Series Tools Window
The Time Series Tools window consists of the following three areas:

Time Series Session tree
Organizes time series data and plots (or Views).

The Simulink Time Series node is shown only when you have installed
Simulink software.

Options and Settings pane

After you select a node in the tree, this pane displays options and settings
pertaining to the node you selected in the tree.

Context-Sensitive Help pane
Provides information and instructions about entering the options and
settings currently shown in Time Series Tools. You can toggle between

displaying or hiding this help by clicking the %/ button in the toolbar. You
can change the width of the help pane by dragging the vertical divider to
the left or to the right.

To learn about other help available in Time Series Tools, see “Getting
Help” on page 4-42.

The following figure shows the three main areas of the Time Series Tools GUI:

4-43



4 Tine Series Analysis

4-44

Time Series Session Tree: Options and Settings:
You can drog and drop a data This pane updates automatically
node into Views 1o create  plot. when you select a node in the tree.

=) Time Serizs Tools
File Edit

Context-Sensitive Help:
Updates with information relevant
to the node you selected in the free

P fm[ 3]

PR
Select time series onboard d Time Series
— Ecit clat: What do you want to do?
B simuink Time Series
: Views Time S ¥ Choose a different time series
(5 Time piots o 9 385E3 | b Edit data and time values
- spectral Piots 10 9.428E3 [
15 v Ptz 20 943563 b Analyze the data
I3 correlations 30 945263 b Define attributes
[ Histograms 40 9.45E3 —
=0 9 507E3 b Define events
?E fffff Al b Define a unifarm time vector
» ; -
I~ Show event takle attributes.. | sddrow | Delete rowts) Elot time series
— Define new unitorm time vector
[ Associate times with calendar dates
Display format: INumeriC - I Tirne units: Isecnnds b l
Sample interval: 10 Start time: F i |
MNumnber of samples: 540 End time: ESSD e |
Current time: uniform 0 to 5380 seconds Apply |
— Plot tirne: seri
& Create new [Time Plots » [named  Pefaut view
Aol to existing plot I d Display |
‘ I3

Time Series Tools Workflow

When you analyze data using Time Series Tools, your workflow might include
the following tasks:

1 Import data from an Microsoft® Excel® workbook, MAT-file, or MATLAB

workspace.

For more information, see “Importing and Exporting Data” on page 4-46.

2 Create a time plot to gain insight into the data features.

For more information, see “Creating a Plot” on page 4-52.



Time Series Tools

3 Select data subset for analysis.
For more information, see “Selecting Data Using Rules” on page 4-66.

4 Edit the data by

¢ Identifying and removing outliers or “dead time” (see “Selecting Data
Using Rules” on page 4-66.

e Manually correcting errors (see “Editing Data and Time” on page 4-71).

5 Process the data by
¢ Interpolating or removing missing values.
® Detrending data by subtracting a mean value or a linear trend.
¢ Filtering to smooth and shape the data.

® Algebraically manipulating existing time series to create a new time
series.

® Resampling data using a specified time vector by selecting or
interpolating values.

For more information, see “Processing and Manipulating Time Series” on
page 4-78.

6 Generating correlation plots, spectral plots, histograms, and XY plots.
For more information, see “Plotting Time Series” on page 4-52.

7 Exporting data from Time Series Tools to the MATLAB workspace or to a
file.

For more information, see “Exporting Data from Time Series Tools” on
page 4-51.

Generating Reusable M-Code

You can enable automatic generation of reusable M-code while you perform
operations that modify data in Time Series Tools. To do this, select File >
Record M-Code in the Time Series Tools window.

4-45



4 Tine Series Analysis

If you are new to programming with MATLAB timeseries methods, you
can use the generated M-code to get syntax examples. For more information
about programming with MATLAB timeseries objects, see “Time Series
Objects” on page 4-3.

For an example of automatically generating and viewing M-code, see
“Example: Time Series Tools” on page 4-79.

Note The scope of the Record M-Code feature is restricted to recording
actions on the time series data itself. It does not generate code to import
data or reproduce time series plots.

Importing and Exporting Data

e “Types of Data You Can Import” on page 4-46

e “How to Import Data” on page 4-47

¢ “Changes to Data Representation During Import” on page 4-48
¢ “Importing Multivariate Data” on page 4-49

¢ “Importing Data with Missing Values” on page 4-51

e “Exporting Data from Time Series Tools” on page 4-51

Types of Data You Can Import
You can import data into Time Series Tools from

® A Microsoft Excel workbook, a text file, or a MAT-file.
® An array in the MATLAB workspace.

A timeseries or tscollection object in the MATLAB workspace.

For more information about creating these objects, see “Time Series
Objects” on page 4-3.

Simulink logged-signal data from a Simulink model.

4-46


http://www.mathworks.com/access/helpdesk/help/toolbox/simulink/ug/?f15-14248.html

Time Series Tools

Note You cannot import a timeseries or tscollection object from a
MAT-file.

How to Import Data
This section includes the following topics:

¢ “Importing Time Series and Time Series Collection Objects” on page 4-47
¢ “Importing Data from External Files” on page 4-47
e “Using the Import Wizard” on page 4-48

Importing Time Series and Time Series Collection Objects. If you have
already encapsulated time series data in a timeseries or tscollection
object in the MATLAB workspace, you can open Time Series Tools and
import the data in a single operation. Simply right-click the object name in
the Workspace Browser and choose Open in Time Series Tools from the
context menu.

Importing Data from External Files. Once you have opened Time Series
Tools, use the following commands to import data from external files. Each
command opens a dialog box. You can get detailed information about options
by clicking Help.

Data Source Import Command

Microsoft Excel worksheet Select File > Create Time Series from
(.x1s) File to open the Import Wizard.

Text file (.csv, .txt, .dat) Select File > Create Time Series from

File to open the Import Wizard.

MAT-file array (.mat) Select File > Create Time Series from
File to open the Import Wizard.

MATLAB workspace array Select File > Import from Workspace >
Array Data to open the Import Wizard.

4-47



4 Tine Series Analysis

4-48

Data Source Import Command

timeseries or tscollection | Select File > Import from Workspace >
object in the MATLAB Time Series Objects or Collections.
workspace

Simulink logged signal Select File > Import from Workspace >

Simulink Data Logs.

Using the Import Wizard. When in Time Series Tools, you import data
from the MATLAB workspace or an external file using the Import Wizard.
The Import Wizard lets you select the data to import when analyzing a portion
of an Excel worksheet or specific columns or rows in a MATLAB array.

After you select the data, you can specify to import time values from a file or
define a uniformly spaced time vector in the Import Wizard. For an example
of importing data from an Excel worksheet, see “Importing and Exporting
Data” on page 4-46.

Each time series you import is added as a data node to the Time Series
Session tree.

Note The Import Wizard in Time Series Tools imports data as timeseries
objects. This is different from the Import Wizard you access from the MATLAB
Command Window, which imports data as MATLAB vectors and matrices.

For instructions about working with the Import Wizard, click Help in the
Import Wizard window. You can also get help on specific fields in the Wizard
as follows:

1 Right-click the text label of a field for which you want to get help.
2 Select What’s This from the shortcut menu.

Changes to Data Representation During Import

When you import data into Time Series Tools, a copy of the data is imported
without affecting the original data source.



Time Series Tools

The data copy is changed during import, as follows:
* Rowwise data is transposed to become columnwise with the time vector
in the first column.

¢ Data with more than two dimensions is reshaped to two dimensions such
that dimensions three and higher become additional columns. For example,
a 2-by-3-by-5 data array becomes a 2-by-15 data array.

* Non-double data, such as int, logical, and fixed-point, is converted to
double.

® Missing data values are replaced by NaNs.

® A sparse matrix is converted to a full matrix.

Caution When you export data from Time Series Tools to a file or to the
MATLAB workspace, please note that its representation might differ from
what you imported into Time Series Tools. For more information about
exporting data, see “Exporting Data from Time Series Tools” on page 4-51.

Importing Multivariate Data

When your data consists of several related variables measured at the same
time, you might want to group this data so that you can plot variables together
or perform calculations on all variables simultaneously.

There are two ways to represent multivariate data in Time Series Tools:

® Create a time series collection with a common time vector, where each time
series is a member of the collection.

* Import a data array into a single timeseries object, where each time

series is stored as a column.

Choosing How to Represent Multivariate Data. How you choose to
represent your data depends on whether the variables have the same or
different units.

When your data contains different measurements of the same quantity (same
units), you can store all measurements as separate columns in a single time

4-49



4 Tine Series Analysis

4-50

series. Plotting such a time series displays all columns on the same axes and
distinguishes the data sets by line and marker styles. For more information,
see “Customizing Line and Marker Styles” on page 4-54.

When your data contains different quantities, measured in different units,
you might want to distinguish these quantities on plots and during analysis.
In this case, we recommend that you store each quantity as a separate time
series and then group them into a time series collection. For example, if you
are working with stock-price data in a portfolio, you might represent each
stock as a separate time series and group them in a collection. When you plot
this collection, each member is plotted on separate axes. However, when
you perform data-analysis operations on the collection, such as filtering or
interpolation, these operations are applied to all time series in the collection
simultaneously.

Creating a Time Series Collection. You can create a time series collection
in the MATLAB Command Window, as described in “Time Series Objects” on
page 4-3, and then import the collection into Time Series Tools. Alternatively,
you can use the Import Wizard to facilitate creating the timeseries objects
and then group them into a collection in the MATLAB Command Window.

The following procedure describes one way to create a time series collection
using data from a file.

Note At each step, you can click the Help button in the GUI to access
context-sensitive help.

1 To import each variable in the Microsoft Excel worksheet or MATLAB
array as a separate time series in Time Series Tools, select File > Import
from Workspace > Array Data. This opens the Import Wizard.

2 After importing the data, select the Time Series node in the tree and
export these time series to the MATLAB workspace.

3 In the MATLAB Command Window, combine individual time series into
a time series collection object. For an example of creating a time series
collection, see “Creating Time Series Collection Objects” on page 4-14.



Time Series Tools

4 In Time Series Tools, select File > Import from Workspace > Time
Series Objects or Collections and import the collection from the
MATLAB workspace.

Importing Data with Missing Values

When you import data from a Microsoft Excel worksheet into Time Series
Tools that contains missing values, the missing data is automatically replaced
with NaNs. NaNs are ignored in Time Series Tools calculations.

To remove or interpolate missing values:

1 Select a time series or a collection in the Time Series Session tree
containing missing values.

2 Select Data > Interpolate or Data > Remove Missing Data, depending
on the operation you want to perform. This opens the Process Data dialog
box.

3 Click Help to access context-sensitive help on specific options in the dialog
box.

Exporting Data from Time Series Tools

Importing data into Time Series Tools creates a copy of the original data.
After you finish analyzing the data in Time Series Tools, you must export it to
a file or to the MATLAB workspace to make it available for other processing.

To export a time series or a collection, select the desired node in the Time
Series Session tree. Then, do one of the following:
e Export to a file (Microsoft Excel worksheet or MAT-file):

Select File > Export > To File.

When you export a time series collection, the individual time series are
extracted into separate Microsoft Excel worksheets.

e Export to the MATLAB workspace:
Select File > Export > To Workspace.

4-51



4 Tine Series Analysis

Plotting Time Series

“Types of Plots in Time Series Tools” on page 4-52

® “Creating a Plot” on page 4-52

e “Customizing Line and Marker Styles” on page 4-54
e “Editing Plot Appearance” on page 4-54

¢ “Time Plots” on page 4-56

e “Spectral Plots” on page 4-57

e “Histograms” on page 4-59

e “Correlation Plots” on page 4-60

* “XY Plots” on page 4-64

Types of Plots in Time Series Tools
You can generate the following types of plots in Time Series Tools.

Plot Type Description

Time Plot Plots data as a function of time to help you see
important features, such as outliers, discontinuities,
trends, and periodicities.

Histogram Plots the number of data values that occur in
specified data ranges, called bins.

Spectral Plot Shows data periodicities by plotting the estimated
power spectral density as a function of frequency.

Correlation Plot Shows the autocorrelation of a time series or
cross-correlation between two time series.

XY Plot Shows the relationship between two time series by
plotting the data values of one on the x-axis and the
data values of the other on the y-axis.

Creating a Plot

You can create a plot in Time Series Tools is by dragging and dropping a Time
Series data node in the Time Series Session tree onto a Views node.

4-52



Time Series Tools

The following figure shows an example of how to create a spectral plot by
dragging the onboard time series onto the Spectral Plots node:

<) Time Series Tools

File Edit Dakta Plob Help
IE% il B REER =

) Time Series Session

Time Series data node E'“j s
is selected and dmt‘ ﬁ Sirulink Time Series
B0 Wiews
to the Spectral Plots nod. o Tone ke
| f:z"i onboard

=~ Spectral Pot
=|3 XY Plots
#-I2 Carrelations
|3 Histograms

4 H

This opens the spectral plot in the Time Series Plots window and adds a tree
node under Spectral Plots. The Time Series Plots window is similar to the
MATLAB Figure window but includes additional commands in the toolbar
and the Tools menu.

Tip To change the default plot name, right-click the plot node and select
Rename and enter the new name.

Subplots. To create subplots in a single figure window, drag several time
series onto the same plot node. If a time series contains several columns
of data, all data columns are plotted on the same axes. See “Editing Plot
Appearance” on page 4-54 for information on interactively modifying the
appearance of subplots.

XY and cross-correlation plots. These plots require two time series. To

create these plots, drag one time series onto a plot node and then drag a
second time series onto the same plot node.

4-53



4 Tine Series Analysis

4-54

Customizing Line and Marker Styles

When you plot several time series on the same axes, or a single timeseries
object that contains multiple columns of data, you can specify how to visually
distinguish between the different sets of data in the plot.

To distinguish data by color, type of marker, or line style, select Plot > Set
Line Properties in the Time Series Tools window. This opens the Line Styles
dialog box. Click Help to learn how to work with this dialog box.

Note Your changes are applied to all open plots.

For an example of setting line styles, see “Creating a Plot” on page 4-52.

Editing Plot Appearance
After you create a plot, you can modify the plot appearance using the Property

Editor as follows:
® Change the range of the horizontal and vertical axes.

® Show statistical annotations on the plot, such as the mean and standard
deviation.

The kinds of statistical quantities you can display vary depending on the
type of plot.



Time Series Tools

The following figure shows the location of the Property Editor relative to
the plot window:

) Time plok: Yiewl
File Edit WYiew Tools Deskiop ‘Window Help

=1ol]

D& h|eRa® 0 oO

R A

Tirne Series Plot of intersection?

120
100
g0
1]
40

Mo, of Wehicles

20

| — ...intersection? |

0

5

10

15 20

Property Editor - Uitspanel

Define ¥ &xes Soaling ; Define Statistical Annotations | Define Damain |

Showy (i) Marme Start Time End Tirme
I hean
I STD
I hediat

Help |

Time plot-specific tools

Time plot of intersection]

Property Editor for scaling and
annofating the time plot

To display the Property Editor for any Time Series Tools plot:

1 Select the plot in the Time Series Session tree.

2 In Time Series Tools, click the Edit Plot button. This displays the plot

window on top with the Property Editor below the plot.

3 In the Property Editor, click Help to get information about options and

S

ettings.

4-55



4 Tine Series Analysis

4-56

Note The Property Editor options change depending on the type of plot and
the plot item you select, such as lines or plot legends.

Subplots. You can change subplot indices interactively. To do so, click on a
plotted line in a time series view and drag and drop it from one subplot to
another. To create a new subplot, drag and drop the plotted line below the
bottom axes.

Time Plots

By plotting data as a function of time, you can quickly gain insight into the
following data features:

¢ Qutliers, or values that do not appear to be consistent with the rest of
the data

® Discontinuities

¢ Trends

® Periodicities

¢ Time intervals containing the data of interest

These features, when considered in the context of the data, enable you to

plan your analysis strategy. For more information about creating a time plot,
see “Creating a Plot” on page 4-52.

After you create the plot, you can use the Property Editor to

e Define Y-axis scale.

¢ Display statistical annotations on the plot, such as mean, standard
deviation, and median.

e Define X-axis scale (or domain).

In the Property Editor, click Help to get information about options and
settings.



Time Series Tools

The Time Plot window contains the following toolbar commands specific to
working with time series data.

Time Plot Commands

Button Description

1 Select Data — Enables you to click and drag a rectangular
region on the time plot to select the data inside the region.

N Move Time Series — Enables you to click and drag a time
series to translate a time series on the plot and recalculate
the data and time values.

When you translate a time series in time, its time vector is
shifted by a constant offset. If you had associated any events
with this time series, the events are not shifted with the time
series. For more information about editing event times, see
“Defining Events” on page 4-13.

s Rescale Time Series — Rescales both axes of the time plot to
the original view.

b5 Select Interval — Enables you to click and drag to select data
corresponding to one or more time intervals. You can select
multiple disconnected intervals.

Spectral Plots

You use a spectral plot (or periodogram) to determine the frequencies of the
periodic variations in the data and to filter the data. For more information
about creating a periodogram, see “Creating a Plot” on page 4-52.

The periodogram is the unbiased estimate of the power spectral density of a
time series, calculated as the scaled absolute value of the (FFT)? of the time
series. The corresponding frequency vector is computed in cycles per unit time
and has the same length as the power vector. The periodogram is scaled so
that the variance equals the mean of the periodogram.

The periodogram is useful for picking out periodic components in the presence

of noise; a peak in the periodogram indicates an important contribution to
variance frequencies near the value that corresponds to the peak.

4-57



4 Tine Series Analysis

4-58

After you create the plot, you can use the Property Editor to

® Define Y-axis scale.
¢ Display the variance for a selected frequency range on the plot.

The periodogram is scaled so that the variance equals the mean of the
periodogram.

® Define frequency scale.

In the Property Editor, click Help to get information about options and
settings.

Filtering the Data. You can use the spectral plot to apply an ideal pass or
stop filter to the data.

You use the ideal notch (stop) filter when you want to attenuate the variations
in the data for a specific frequency range. Alternatively, you use the ideal pass
filter to allow only the variations in a specific frequency range. These filters

are “ideal” in the sense that they are not realizable; an ideal filter is noncausal
and the ends of the filter amplitude are perfectly flat in the frequency domain.

To apply an ideal filter:

e

1 In the Spectral Plot window, click the Select Frequency Interval(s) ©
button in the toolbar.

2 Click and drag on the plot to select a frequency interval. The selected
interval appears in a different color.

3 Decide if you want to select another frequency interval.
¢ If yes, repeat step 2. The previously selected remains selected.

¢ If no, go to step 4.

4 Right-click a selected region on the plot and select one of the following
from the shortcut menu:

¢ To allow only the variations in the selected frequency range, select Pass.

¢ To remove the variations in the selected frequency range, select Notch.



Time Series Tools

Histograms

The histogram plot shows the distribution of data by counting the number

of data values within a specific range of values and displaying each range as
a rectangular bin. The heights of the bins represent the numbers of values
that fall within each range. For more information about creating a histogram,
see “Creating a Plot” on page 4-52.

You can use a histogram plot to select data values that fall in a specific range
to exclude or include them in your analysis. If you want to interpolate specific
data values, you can select them in a histogram plot first, and then replace
them with NaNs. For more information, see “Removing and Interpolating
Missing Data” on page 4-17. Then, you can interpolate all values tagged as
NaNs using the selected interpolation method. For more information about
specifying an interpolation method, see “Defining Data Attributes” on page
4-72.

Note Time Series Tools generates a histogram plot of a time series by
applying the MATLAB hist function.

After you create the plot, you can use the Property Editor to

e Define Y-axis scale.

¢ Display statistical annotations on the plot, including the mean and the
median.

e Define data bins.

In the Property Editor, click Help to get information about options and
settings.

Selecting Data.

1 In the Histogram window, click the Select Y Range Interval = button
in the toolbar.

2 Click and drag a rectangular region on the plot to select a data interval.
The selected interval appears in a different color.

4-59



4 Tine Series Analysis

4-60

3 Decide if you want to select another data range.

® Ifyes, repeat step 2. The previously selected remains selected.

¢ If no, you are done.

Removing or Replacing Data with NaNs. After you select the data, as
described in “Selecting Data for Analysis” on page 4-66, you can delete it or
replace it with NaNs. If you want to interpolate specific data values, you must
replace the selected data with NaNs first.

To delete data, right-click the selected region and select Remove Selection
from the shortcut menu.

To replace data with NaNs, right-click the selected region and select Replace
with NaNs from the shortcut menu.

Correlation Plots

You can create autocorrelation plots (correlograms) and cross-correlation plots
in Time Series Tools. A correlation plot shows correlation coefficients on the
vertical axis, and lag values on the horizontal axis.

A lag is defined as the number of time steps by which a time series is shifted
relative to itself (when autocorrelated), or relative to the corresponding time
values of another time series (when crosscorrelated). Notice that a lag is not
a time shift (in specified time units). However, you can interpret a lag as a
time shift when the time series is uniformly sampled (autocorrelation), or
when both time series are uniformly sampled with the same time interval
(cross-correlation).

This section includes the following topics:

e “Autocorrelation of a Time Series” on page 4-61
e “Cross-Correlation of Time Series” on page 4-61
¢ “Interpreting Correlation Plots” on page 4-63

® “Cross-Correlation Algorithm” on page 4-64



Time Series Tools

Note If your data is sampled at irregular time intervals, resample it on

a uniform time vector before creating correlation plots. This is because
correlation analysis only considers the number of time steps between data
values, and not the actual time elapsed between successive measurements.
For more information about resampling time series, see “Processing and
Manipulating Time Series” on page 4-78.

Autocorrelation of a Time Series. The autocorrelation function is an
important diagnostic tool for analyzing time series in the time domain.

You use the autocorrelation plot, or correlogram, to better understand the
evolution of a process through time by the probability of relationship between
data values separated by a specific number of time steps.

The correlogram plots correlation coefficients on the vertical axis, and lag
values on the horizontal axis. To learn more about correlation coefficients, see
“Correlation Coefficients” on page 3-5.

To create a correlogram, drag and drop a time series into a Correlations
node. Then explore the plot by editing the lag range in the Property Editor.

If a time series contains multiple data columns, your plot contains
cross-correlations of the various data columns. For more information, see
“Cross-Correlation of Time Series” on page 4-61.

Note A correlogram is not useful when the data contains a trend; data at all
lags will appear to be correlated because a data value on one side of the mean
tends to be followed by a large number of values on the same side of the mean.
You must remove any trend in the data before you create a correlogram. For
more information about accessing detrending functionality, see “Processing
and Manipulating Time Series” on page 4-78.

Cross-Correlation of Time Series. Cross-correlation is a measure of the
degree of the linear relationship between two time series. A high correlation
between time series at a specific lag might indicate a time delay in the system.

4-61



4 Tine Series Analysis

Note Before creating a cross-correlation plot, make sure that both time
series have the same uniform time vector.

To create a cross-correlation plot, successively drag and drop the first time
series and the second time series into the same Correlations node in the
Time Series Session tree. Then explore the plot by varying the lag range in
the Property Editor.

A cross-correlation plot of two time series, where each contains a single
column of data, shows the degree of linear relationship between the data
values in the two time series at various lags. For example, the following
figure shows a cross-correlation plot of two time series, intersection1 and
intersection2. There is a high correlation when there is no lag in the data,
as well as for lags of about -11 and 11.

<) Time Series Plots - Correlation plot: Yiew2

File Edit View Tools Debug Deskiop Window Help k] | A X
DE& kK RAM OB 2O =Rug=F=1lw)
Crosscorrelation: intersectionZ - intersection’

1

0sr R
1]

0.5 L L L L L
=30 =20 -10 a 10 20 30

Lags
ﬂ! Correlation plot: View2  x | Correlation plot: Wiew! = | |

B

Cross-Correlation of Two Time Series

4-62



Time Series Tools

A cross-correlation plot of two time series, where each contains multiple data
columns, is displayed as a grid of subplots. The number of subplots equals the
number of columns of data in the first time series multiplied by the number of
columns of data in the second time series.

When you autocorrelate a time series with multiple data columns, the
resulting plot also contains subplots. The diagonal of the subplot is the
autocorrelation of a specific data column. The off-diagonal subplots are
cross-correlation plots of the various columns. The subplot indices correspond
to the indices of the data columns being correlated. For example, the figure
below shows a correlation plot of the time series counts with three data
columns.

<) Time Series Plots - Correlation plot: Yiew1

File Edit Yiew Tools Debug Desktop ‘window Help a | A X
DE&| k| RANODE =8O HOB 30

Autocorrelation: counts

1

Subplot indices correspond to
the data columns correlated in

time series with 3 data columns.

(1 ona 03
(211 211 [23]

1]

(311 321 [33]

SBE

=0\ A =1 o 20
Lags

Cross-Correlation of Multiple Data Columns in a Time Series
Interpreting Correlation Plots. The following table describes the degree

of relationship between the data values at a given lag for various correlation
values.

4-63



4 Tine Series Analysis

4-64

Correlation Value Meaning

Close to 1 There is a relationship between data
values at a specific lag: an increase

in one corresponds to an increase in
the other.

0 The variations in the data show no
relationships at this lag.

Close to -1 There is an anticorrelation between
the data values at a specific lag:

a decrease in one data value
corresponds to an increase in the
other data value.

Cross-Correlation Algorithm. When computing the cross-correlation of
two vector-valued time series x and y, Time Series Tools uses an algorithm
that is functionally equivalent to calling the Signal Processing Toolbox™
xcorr function from with the 'biased' option, after the time series means
have been removed. Unlike xcorr, however, the cross-correlation estimate in
Time Series Tools also works for matrix-valued time series X and Y, where it
computes the cross-correlation of X(:,1i) against Y(:,j) for all combinations
of columns i and j. Note that Time Series Tools do not actually use the xcorr
code, but rather a simplified version which works under these restricted
assumptions.

XY Plots

An XY plot plots the data values of one time series against the data values
of another time series at corresponding times. Any relationship between the
two time series is evident from a pattern on the plot. For example, when
the points on the XY plot form a straight line, there is a linear relationship
between the data values of the two time series plotted. The XY plot does not
show any time information.

Note To generate an XY plot, both time series must have the same time
vectors.




Time Series Tools

To create an XY plot, successively drag and drop the first time series and the
second time series into the same XY Plots node in the Time Series Session
tree.

When you are plotting two time series where each contains a single column of
data, the XY plot includes a single set of axes. The pairs of data values from
the same position in the column of data; that is, the third data point from
one column is plotted against the third data point from the other column.
For an example of generating such an XY plot, see “Comparing Data on an
XY Plot” on page 4-91.

An XY plot of two time series, where each contains one or multiple data
columns, is displayed as a grid of subplots. The number of subplots equals the
number of columns of data in the first time series multiplied by the number
of columns of data in the second time series. The subplot indices correspond
to the indices of the data columns.

The following figure shows an XY plot, where the data values in time series
count are plotted on the X-axis against the corresponding data values of
intersection1 on the Y-axis. Because count contains three data columns
and intersectioni contains one data column, the XY plot window shows
three subplots.

4-65



4 Tine Series Analysis

4-66

<) Time Series Plots - XY plot: Yiew2?
File Edit View Tools Debug Deskiop Window Help N | A X
D@ &|(h|QRaM 0E| =00 BOBs0
XY Plot counts - intersection3
counts:1 counts:2 counts:3
300
250
_ 200
&5 Fox % #
=
o=
o 180 ® 1 ® 1 ®
a1}
@
42 H s Ed
(7 1DD k0 1 ® X ] *
* * W
¥ X Hy %
SD Xx 1 § 1 Xx
® KX ®
L AT - S
20 40 BO BO 100 2040 B0 8010020140 &0 100 150 200 250
counts
VA

XY Plot Where One Time Series Contains Three Data Columns

Selecting Data for Analysis

o “Selecting Data Using Rules” on page 4-66
o “Selecting Data Graphically” on page 4-67
e “Excluding Data from Analysis” on page 4-68

Selecting Data Using Rules

You can select data using logical expressions in the Select Data Using Rules
dialog box, which you access from a time plot. For more information about
creating a time plot, see “Creating a Plot” on page 4-52.

To open the Select Data Using Rules dialog box, right-click inside the time
plot and choose Select Data from the shortcut menu. Click Help in the
dialog box to get information about specific options.



Time Series Tools

You can define up to four kinds of data-selection conditions:

Bounds — Upper and lower bounds for time and data values

Outliers — Condition for detecting outliers, or data values that are outside
a specified confidence level

MATLAB expression — A logical MATLAB expression that selects specific
data values

Flatlines — Condition for detecting a specified number of successive data
points with a constant value

Tip To learn how to exclude data from analysis based on your selection, see
“Excluding Data from Analysis” on page 4-68.

Selecting Data Graphically

This section describes how to select data in a time plot by using the mouse. For
more information on creating a time plot, see “Creating a Plot” on page 4-52.

You can select data using two modes:

Data mode — Enables you to select data values in a rectangular region
on the time plot.

For more information, see “Selecting Data in a Rectangular Region” on
page 4-68.

Time mode — Enables you to select data values in one or more time
intervals on the time plot.

For more information, see “Selecting Data in a Time Interval” on page 4-68.

Tip To learn how you can select specific data values in a histogram plot, see
“Selecting Data for Analysis” on page 4-66.

4-67



4 Tine Series Analysis

4-68

Selecting Data in a Rectangular Region.

1 In the Time Plot window, click the Select Data e button in the toolbar.

2 Click and drag a rectangular region on the plot that encloses the data you
want to select.

The data values are selected when you release the mouse button.

3 Decide if you want to select another region.

¢ If yes, repeat step 2. This does not clear the previous selection.
¢ If no, you can continue by excluding data from analysis (see “Excluding
Data from Analysis” on page 4-68).

Selecting Data in a Time Interval.

1 In the Time Plot window, click the Select Time Interval(s) = button in
the toolbar.

2 Click the start of a region that encloses the time interval where you want
to select data, and then drag it. The selected time interval appears in
a different color.

3 Decide if you want to select another time interval.

¢ Ifyes, repeat step 2. This does not clear the previous selection.

¢ If no, you can continue by excluding data from analysis (see “Excluding
Data from Analysis” on page 4-68).

Excluding Data from Analysis

After you select the data, you can either exclude or keep the selected values.
The following table summarizes how to do this.



Time Series Tools

Task Operation

Exclude selected data from analysis | Right-click the selected data in
the time plot and select Remove
Observations from the shortcut
menu.

When there are multiple data
columns in a single time series, this
removes the entire data sample at

that time.
Exclude unselected data from Right-click the selected data in
analysis the time plot and select Keep
Observations from the shortcut
menu.

Editing Data, Time, Attributes, and Events

¢ “Displaying the Data Table” on page 4-69

¢ “Editing Data and Time” on page 4-71

¢ “Defining Data Attributes” on page 4-72

® “Assigning Quality Codes to Data” on page 4-74
¢ “Defining Events” on page 4-75

Displaying the Data Table

To display the time series in an editable table, select the time series node in
the Time Series Session tree.

In the following figure, the time series intersectiont is selected in the tree
and its data table is shown on the right. The Time column contains time
values and the intersectionl:1 column contains the corresponding data
values in the first column and only data column of intersectioni.

If intersection1 had multiple data columns, they would appear in the

table and numbered as intersectionl:2, intersectionl1:3, and so on. The
data column headers are also used as plot labels to distinguish time series in

4-69



4 Tine Series Analysis

4-70

plots. For more information about creating plots, see “Plotting Time Series”

on page 4-52.
<) Time Series Tools ;|g|5|
File Edit Data Plot Help
MEEooE2R2a
[F:__J Time Series Session — Edit dat
E||EJ Time Series
i ?ntersect?om Titme: intersection:1
i intersection2
H il intersection3 L o -
ﬁ Simulink Titme Series ; E Il
B views 5 "
) Time Plats - i
) Spectral Picts - -
15 0w Piots
. 7 61
: 153 Correlstions 5 =
- Histograms
¢ ] 35
10 28
11 12
12 15 |
13 15
14 17
15 19
16 32
17 42 LI
[ Showe event table Attributes. . Al rowe Delete row(s)l
Current time: unifarm 1 to 24 hours Unifarm Titne Wectar... |
— Plat time =eries
¥ Create new Type: ITime Plots d Matre: I\/iew1
€ Al to exizting plot | -] Display
Kl |

Note To toggle between displaying and hiding the help pane in Time Series

Tools, click the # button in the toolbar.




Time Series Tools

Editing Data and Time

After you display the time series data, as described in “Displaying the Data
Table” on page 4-69, you can edit specific data and time values, define a
uniform time vector, and add or remove data samples.

Edit Time or Data Values. To edit a specific time or data value, double-click
that cell in the table and enter the new value. Press Enter.

Note When entering time values, you must use the current display format of
your time vector. For more information, see “Time Vector Format” on page
4-22,

Define a Uniform Time Vector. To define a uniformly-increasing time
vector, click Uniform Time Vector below the data table. This opens the
Define Uniform Time Vector dialog box.

Here, you specify the start and end time of the time vector, the time units, and
the display format. The time interval is calculated automatically by dividing
the total time range by the number of data samples. You can get more
instructions by clicking Help in the Define Uniform Time Vector dialog box.

When you are done specifying the time vector, the new time values replace the
previous time values in the data table.

Add Data Samples. To insert a row in the data table, click any cell in a
row and click the Add Row button. Enter the time and the corresponding
data values.

Delete Data Samples. To delete a row in the data table, select one or more
rows with the mouse and click the Delete Row(s) button.

4-71



4 Tine Series Analysis

4-72

Defining Data Attributes
The following attributes are defined for time series:

e Units — Stored as metadata for each time series.

¢ Interpolation method — Default method used to fill in missing data or to
resample data on a new time vector.

¢ Quality codes — Used to annotate the quality of each value in the data
table.

Click the Attributes button below the data table to open the Define Data
Attributes dialog box. For information about displaying the data table, see
“Displaying the Data Table” on page 4-69.

Units and Interpolation Method. Data units are stored as metadata for
the currently selected time series. If this time series contains multiple data
columns, all data is assigned the same units.

In the Units & Interpolation tab, enter a string in the Data units field. For
example, enter N/m"~2.

The interpolation method you select here is used by default for this time
series to fill in missing data or to resample the data on a new time vector.

In the Units & Interpolation tab, select one of the following Interpolation
methods:

e Linear — A 1-D interpolation method that implements the MATLAB
function interp1 to fit a straight line between a pair of existing data points
to calculate the missing value.

® Zero-order hold — Calculates the missing value by setting it equal to the
last available data value. In other words, this methods “holds” the last
value constant until the next available measurement.



Time Series Tools

) Figure 2: Define Data Attributes - |EI|5|

Qualty Codes | Units & Interpolation I

— Define Metadata
Data units: }:ars
Interpolation: Linear j

Zero arder hald

(004 Cancel Help

Quality Codes. You can define quality codes to annotate the quality of each
value in the data table. Each quality attribute consists of a numerical code
and a brief description. For information about assigning quality codes to
specific data values, see “Assigning Quality Codes to Data” on page 4-74.

Tip To save time, first define the quality attribute that applies to most of your
data values. It is automatically assigned to all data values. Then, define the
attributes that occur less frequently and set them manually in the Quality
column of the data table.

1 In the Define Data Attributes dialog box, click the Quality Codes tab.

2 Click the Add Code button. This adds an empty row in the Quality Codes
table.

3 Click the empty cell in the Code column and type an integer from 0 to 127.

4 Press the Tab key. This highlights the cell in the Description. Type one
or two words that briefly describe the numerical code, such as Validated.

4-73



4 Tine Series Analysis

5 To add another quality code, repeat steps 2 to 4. Or click OK to close the
dialog box. This also assigns the first quality code you defined to all data
values in the table.

The following figure shows two quality codes: Validated and Not validated.

) Figure 2: Define Data Attributes - |EI|5|

Qualty Codes | Urits & Interpolation |

— Erter a quslity code

Code Description
1 W alidated
2 ot validated T

Al Cocle | Delete Code |

(004 Cancel | Help |

Note To delete a quality attribute, select it and click Delete Code.

Assigning Quality Codes to Data

After you define quality codes, as described in “Quality Codes” on page
4-73, the quality code you defined first is automatically assigned to all data
values in the data table. For information about displaying the data table, see
“Displaying the Data Table” on page 4-69.

To assign a different quality code to a specific data value, click the

corresponding cell in the Quality column and select a different value from
the drop-down list.

4-74



Time Series Tools

— Edit dats
Time: intersectiont:1 Cality
1 11 W aliclated -
2 7 Mot validated
3 14 W aliclated
4 11 ' alicdated
5 43 Walidated =
E 35 “alidated
T 1
[ 75 W alicdatedd
9 35 ' alicdated
10 25 W aliclated
11 12  alicdated
12 15 W aliclated |
13 18 W aliclated
14 17 ¢ alickated
15 19 W aliclated
16 32 ' alicdated
17 42 W aliclated LI
[~ Show event takle Attributes . I Al row Delete roW(SjI
Cutrent time: unifarin 1 to 24 hours Unifarm Tirme Yectar... I

Defining Events

Events are stored as metadata for each time series. Time series events mark
the data at a specific time in the data table and on a plot. For information
about displaying the data table, see “Displaying the Data Table” on page 4-69.

You can also use events as reference points when shifting time series in time.
For more information about synchronizing time series, see “Processing and

Manipulating Time Series” on page 4-78.

To define events for the selected time series:

1 Make sure that the Show event table check box is selected. This check
box is located below the data table:

4-75



4 Tine Series Analysis

Titne: intersectiont:1 Cuality
1 11 Walidated |
o 7 Mot validated J
3 14 alidsted
4 11 v alidated
5 43 “alidated =l
£ 3 alidated
7 &1 validated
= 75 alidsted =
[+ Showe event table Attributes I Al rove I Delete: row(s)l
Mame | Description | Time |
‘pad et | Delete event |
Select fo show
event table. Click 1o clefine events.

2 Click the Add event button below the event table. This opens the Define
New Event dialog box.

3 In the Name field, enter the name of the event, such as AMCommute.

) Define New Event =10 %]

Marme IH.MCc:mmute

Titne/Date ls |

Ok | Cancel | Help |

4 In the Time/Date field, enter or edit the time of the event in the
appropriate display format. For information about time-vector formats, see
“Time Vector Format” on page 4-22.

4-76



Time Series Tools

Tip To facilitate entering a date string, click the _-- | (Browse) button to
open the Specify Date/Time dialog box. Select the month, year, and day.
Then enter the Time in HH:MM:SS format.

5 Click OK.

The following figure shows two events in the event table: AMCommute and
PMCommute. The data table also contains both events and AMCommute is

shown at 6.0 hours.

— Edit dats
Time intersectiont:
1 11 N
2 7 J
3 14
4 11
B 43
£ 35
E.0
T 1 T
¥ Show evert table Aftributes | Acld rosne | Celete row(s)l
[Marne Description Titne
AtdCommute 5.000
PrACarmmute 18.000

Current tire: uniform 1 to 24 hours

Add evert I Delete eventl

Unifarm Time Yectar... I

Events are displayed as markers on time series plots. The following figure
shows the AMCommute marker (at 6.0 hours) and PMCommute marker (at

18.0 hours) on a time plot.

4-77



4 Tine Series Analysis

4-78

)} Time Series Plots - Time plot: Yiew1 § -0 x|
File Edit Wiew Tools Debug Deskiop ‘Window Help A | A X

5 [E =l

Tirme Series Plot of intersection?

120

| — ...;ntersectinm | .
100 | |

60 +

60 -

Mo, of vehicles

40t

20+

5 10 = 20
Time (hours)

Time Plot with Event Markers

Processing and Manipulating Time Series

The following table summarizes the operations you can perform on individual
time series or time series collection. These commands are available from the
Data menu in Time Series Tools after you select a time series or collection
node in the Time Series Session tree.

Note If you are viewing a time plot, these operations are available by
right-clicking inside the time plot and selecting a command from the shortcut
menu. For more information about plotting data, see “Plotting Time Series”
on page 4-52.

Each command opens a dialog box where you can get detailed instructions
by clicking the Help button.



Time Series Tools

Data Analysis Commands

Command

Description

Data > Remove
Missing Data

Delete the times that contain missing data.

Data > Detrend

Subtract a constant or a linear trend from the
data.

Data > Filter

Smooth and shape the time series data.

Data > Interpolate

Interpolate missing values.

Data > Resample

Select or interpolate data values using a specified
time vector.

Data > Transform
Algebraically

Create a new time series by algebraically
manipulating existing time series.

This command is available only when you select
an individual time series in the tree.

Data > Descriptive
Statistics

Get summary statistics for each time series.

Example: Time Series Tools

¢ “Loading Data into the MATLAB® Workspace” on page 4-80

e “Starting Time Series Tools” on page 4-80

¢ “Enabling M-Code Generation” on page 4-80

¢ “Importing Data into Time Series Tools” on page 4-81

e “Creating a Time Plot” on page 4-83

¢ “Resampling Time Series” on page 4-89

¢ “Comparing Data on an XY Plot” on page 4-91

¢ “Viewing Generated M-Code” on page 4-93

e “Exporting Time Series to the Workspace” on page 4-95

4-79



4 Tine Series Analysis

4-80

Loading Data into the MATLAB® Workspace

Type the following command at the MATLAB prompt to load the hourly traffic
counts at three road intersections, collected over a 24-hour period:

load count.dat
This adds the variable count to the MATLAB workspace.
Starting Time Series Tools

To start Time Series Tools, type

tstool

This opens the Time Series Tools window. For more information about this
GUI, see “Time Series Tools” on page 4-41.

Enabling M-Code Generation

In this portion of the example, you will enable automatic M-code generation in
Time Series Tools to capture reusable M-code as a MATLAB function.

1 In the Time Series Tools window, select File > Record M-Code. This
opens the Record M-Code dialog box.

«): Record M Code i x|

Log file path: IH:'ID::u:umentsITS |

Log file mame: Its’cl:n:nlll:ug.m

Record | Ehap | Cloze |

2 Click the .. | button and select the folder where you want to store the
M-file.

3 In the Log file name field, either select the name of a recently used file,
or type a new name. The file name creates the function name you call in
your M-code to reuse this function.



Time Series Tools

4 To begin capturing M-code, click Record. The M-code is recorded until you
stop recording, as described in “Viewing Generated M-Code” on page 4-93.

Tip You can close this dialog box without interrupting the recording operation
by clicking Close. To reopen the dialog box, select File > Record M-Code in
the Time Series Tools window.

Note The scope of the Record M-Code feature is restricted to recording
actions on the time series data itself. It does not generate code to import
data or reproduce time series plots.

Importing Data into Time Series Tools

This portion of the example shows how to create three time series from the
24-by-3 count array you loaded into the MATLAB workspace.

Note To get help on a specific field in the Import Wizard, right-click the field
label and select What’s This from the shortcut menu.

1 In the Time Series Tools window, select File > Import from Workspace
> Array Data. This opens the Import Wizard.

2 In the Import from list, select MATLAB workspace and click Next.

— Current Step

Step 1: Choose the source that contains time-series data.

— Data Source

Impott frotm : MATLAE ce

Excel Workhook (.x1s)
KA T-file ( mat)
(3=

MATLA

4-81



4 Tine Series Analysis

3 In Step 2 of the Import Wizard, select the count variable. The Import
Wizard infers from the data that it is arranged in columns.

— Specify data

‘“Yariahle Mame I Size | Eytes | Class I
] count % 2443 576 double

Data i= arranged by : Icolumns d Refresh List |
Selectad row(s): I 24 Selected colurn(s) : I:I:S

4 In the Specify Time Vector area, select hours from the Units list. In the
Start Time field, type 1 to start the time vector at 1 hour. The Import
Wizard has already filled in the remaining options to define a uniformly
spaced time vector with a length of 24 and an interval of 1.

Specify time vector
Time-vector Source Idefine it o d
Usze INumericaI Time - l Units : Ihours d
Start Time : [ Samples P4 Interval : l

5 Click Next.

6 In Step 3 of the Import Wizard, select Create several time series
using: common name+number. In the Enter common name field, type

intersection.
(™ Creste a new time series with the name : l:ount
% Create several time seties using : Icommon namme + number j Erter comman name : FMEFSECﬂDH|

= Append data to an existing time series : I d Reftesh List |

4-82



Time Series Tools

7 Click Finish. This adds three time series to the Time Series Session tree:
intersectioni, intersection2, and intersection3 (as shown below).

) Time Series Session
. N E-I50 Time Series

Imported time series

become nodes in the

free.

~-|itd] intersection3
ﬁ Simulink Time Series
10 Wiewvs

I Time Plats
I3 Spectral Plats
|20 XY Plots

-2 Correlations
|70 Histograms

Kl I3

Creating a Time Plot

To explore the data, you can create a time plot of the three time series in the
Time Series Tools window.

4-83



4 Tine Series Analysis

4-84

1 In the Time Series Session tree, drag and drop the intersectioni time
series into the Time Plots node. This creates a time plot in a new window
with the default name Viewl.

) Time plot: Yiewl i ] 1]
File Edit Yiew Tools Deskbop ‘Window Help k']
D& haa® 0B o0me s Time plot-specific fools
Time Zeries Plot of intersection?
120
100 | ..intersectionl | |
8 g Time plot of intersection]
=
> &0
G
o 40
=
20
0 , \ , ,
5 10 15 20
bogrty Edor for sl
Define Y &xes Scaling : Define Statistical Annotations | Define Domain | unmfuiirl;] ﬂ'ﬁ time pbi
Showe (vl Marne Start Tirme End Titme
r Mean
I STD
r |Median
Help |




Time Series Tools

2 In the Time Series Session tree, drag and drop the intersection2 and

intersection3 time series into Viewl to add them to the plot.

) Time plot: Yiew1

File  Edit

View Tools Desktop ‘Window Help

=101]

D& hkay| 0@ eOn+EF

Mo. of %ehicles

200

=
[}
=

- ha
[} [
= oo

=

400

200

Multiple Time Series

| — ...intergection! |

— ...intersection3

5 10 iS5

Tirme (hours)

4-85



4 Tine Series Analysis

4-86

3 To display all three time series on the same axes, click the View1l
node in the Time Series Tools window. Change the subplot indices for
intersection2 and intersection3 to [1] and press Enter.

Select the plot in the tree
o edit ifs display.

+) Time Series Tools

Click the hyperlink to
display and edit the data.

Change Subplot Index to [1]
to display all time series on the

same axes.

) (] b3
File Edit |Data Plob Help
%l 5l T | Sl=%
[:E| Time Series Session Select viewy - d
£ Time Saries
: intersection? — Diefine Disglayed Time Seri
intersection2
§ intersection3 Titne series Path Size Subplat Index Yizible?
ﬁ Sirnulink Time Series intersectionl Tine Seriesintersection? 24 %1 [1] =
@ Wigws intersection?  |Time Seriesfintersection2 24 %1 [1] ¥
=-IC3) Time Plots —_—
i }_é % intersection®  [Tine Seriesintersection 24 %1 [1] =
----- IC5) Spectral P
----- I ¥ Plots
----- [C3) Correlations
----- i Histograms
Eclit Plot ... Remave Time Series From Wiew
Kl i




Time Series Tools

This displays all time series on the same axes, as follows:

) Time plot: Yiew1 ] JE3
File Edit View Tools Deskiop ‘Window Help u

D& hkay| 0@ eOn+EF

Multiple Time Series

300
— ...intersectionl
25071 | — ...intersection
— ...intersection3

Mo. of %ehicles
= =2 b
= () =
= = =

[y}
=

5 10 il 20
Tirme (hours)

4 To change the appearance of the time series in the plot, go to the main
Time Series Tools window and select Plot > Set Line Properties. This
opens the Line Styles dialog box.

5 In the Line Styles dialog box, click Line Style to distinguish the time
series, shown as follows.

4-87



4 Tine Series Analysis

4-88

) Line Styles B ] A |
Distinguish by:
ol Itk Lire Sty &
- . olor arker Ire =) Distincti
Select fo distinguish e
individual fime series — Titne series o e o s
using Line Style. T = 7 = =
Calar Crder Marker Order Lire Style Order
Click up and down arrows il N
z z Cyan +
o change the order in which ( e (]
ji el =
(olor, Ml:!rlfer, orline Style | [ tk (
characteristics are used on b
the plot. =l =l =l
Ok | Cancel | Help | Apply |
The plot now looks like this.
) Time plot: ¥iew1 o ] o4

File Edit View Tools Desktop ‘Window Help

DE&| h|RQAN| OB 8 O

hultiple Time Series

300

— ...intersectionl
250 — — " ..intersection?
_.intersection3

Mo. of Wehicles

Tirme (hours)




Time Series Tools

Resampling Time Series

You can select or interpolate time series data using a specified time vector.
When the new time vector contains time values that are not present in
the original time vector, the intermediate data values are calculated using
the interpolation method you associated with this time series. Linear
interpolation is used by default. For more information about specifying the
interpolation method, see “Defining Data Attributes” on page 4-72.

This portion of the example shows

¢ “Resampling on a Uniform Time Vector” on page 4-89

¢ “Resampling by Finding a Common Time Vector” on page 4-91

Note You can only resample one time series at a time.

Resampling on a Uniform Time Vector. First, you resample the time
series intersectioni to include values every 2 hours.

4-89



4 Tine Series Analysis

4-90

1 Right-click inside the time plot you created in “Creating a Plot” on page
4-52 and select Resample Data from the shortcut menu. This opens the
Resample Data dialog box.

) Resample Data i ] 4
Select the plat Time Plots: View d
— Defing Time Series
Titne seties Path
v intersectionl  [Time Seriesintersectiont ;I
r intersection?  |Time Seriesfintersection?
I~ intersections  [Time Seriesfintersections =
d | 0|

' Overwrite selected time series

™ Create new time series

— Specify Mew Time Wectar

= Unicn of time vectors on the interval where they overlap

(" Intersection of time wectors on the interval where they overlap

% Uniform time wector with time interwval Iz hours j

£~ Use time wector from time series ITime Seriesfintersection d

— Meswy Time Wector

Start time: 1 hours

End time: 24 hours

oK I Cancel I Help |

2 In the Define Time Series area, select only intersection1 and clear
the rest.

3 In the Specify New Time Vector area, click Uniform time vector with
time interval and specify the time interval as 2 hours. Click OK.

Tip To verify that intersection1 is resampled, select it in the Time Series
Session tree and examine the data table. It should have a time vector that
starts at 1 hour and increases in increments of 2 hours.




Time Series Tools

Resampling by Finding a Common Time Vector. In some cases, you
might want one time series to have the same time vector as another time
series on the overlapping region of time values. This is especially useful when
you want a specific time series to inherit a nonuniformly spaced time vector.

In this example, you resample intersection2 on the same time vector as
intersectioni.

1 Right-click inside the time plot you created in “Creating a Plot” on page
4-52 and select Resample Data from the shortcut menu. This opens the
Resample Data dialog box.

2 In the Define Time Series area, select only intersection2 and clear
the rest.

3 In the Specify New Time Vector area, click Use time vector from time
series and select intersectioni from the list. Click OK.

To verify that intersection2 is resampled, select it in the Time Series
Session tree and examine the data table. It should have a time vector that
starts at 1 hour and increases in increments of 2 hours.

Comparing Data on an XY Plot

The XY plot is useful for visually determining a relationship between the data
values of time series at corresponding times. For example, when the points
on an XY plot form a straight line, there is a linear relationship between the
two time series.

In this portion of the example, you examine the relationship between the
corresponding data values of intersectioni and intersection2 by using
an XY plot.

1 In the Time Series Session tree, drag and drop the intersectionl time

series into the XY Plots node. This creates a new plot node with the
default name View2.

4-91



4 Tine Series Analysis

2 Drag and drop the intersection2 time series into the View2 node. This
creates the following XY plot.

-} Time Series Plots - XY plok: ¥iew2 _|EI|1|
File Edit View Tools Debug Desktop Window Help k] | A X
DE&g hQa® 0B =03 HDAB&O
KY Plaot intersection - intersection2
From: intersection1:1 Ta: intersection?
140 T T T T T
120 + R
100 + R
Il e
& Baf 1
)
o
o x
x BOp >< R
= P
o S
40 F b
e
20r , = b
XX
D 1 1 1 1 1
20 30 40 50 B0
intersection

| Time piat: viewt [y piet viewz = | |

4-92



Time Series Tools

3 To show the best-fit line on the XY plot, click the Define Statistical
Annotations tab in the Property Editor and select the Best fit line check
box. Then, click the line to display the line equation on the plot.

) Time Series Plots - XY plot: YiewZ =10] x|
File Edit Vew Tools Debug Desktop ‘Window Help k] | X
De&| ik Qaf| 0B oo AOBs0
dslAA|B z|E== N \NTOO|H &

A Plat intersection? - intersection2

From: intersection1 Tao: intersection2
140 T T

120 ¢

100

80 |

60 -

intersection2

40| Regression line .07
imersediong}ﬂersec‘tiom 1
Slope: 2.+
20+ Bigs: <14
[ ¢
D |

20 30 40 A0 B0
intersection?

Viewing Generated M-Code

You can now view the M-code that Time Series Tools generated while you
performed the previous steps in this example.

To view the M-file:

1 In the Time Series Tools window, select File > Record M-Code to open the
Record M-Code dialog box.

2 Click Stop to open the M-file with the generated M-code in the MATLAB
Editor.

4-93



4 Tine Series Analysis

4-94

‘B Editor - H:\Documents', TS tstoollog-m oy ] 4]
File Edit Text Go Cel Tools Debug Desktop Window Help i | A X

Dﬁ:nl&E""ﬁ‘|§|!ﬁ.*f.|@ﬁ|@@@@@|ﬁack:lBaSEVl IEEl 'l

|"%E%JE|-|.0 +|+|1.1 X|%9i%9§|9,

o Thig file uzes Cell Mode. For information, see the rapid code iteration video, the publizhing video, ar help. x
i function [intersectionl, intersectionZ] = tstoollogi{intersectionl, intersection2) L]
2
3 #% Time Series Tool Auto Generated M file: 07-Hov-2005 10:58:06
E ] #% Time series resamplejmerge
5 - time = 1.000000:2.000000:24,.000000;

E — intersectionl = resamwple (intersectionl,time):
7 &% Time series resample/merge

8§ - time = intersectionl.Time;

9 - intersections = resample(intersectioni,tine) ;

10

[ tetocllag Gl | ]

Automatically Generated M-Code

You can reuse this M-code by calling the tstoollog function, which has the
same name as this M-file. You specified the file name when you enabled
M-code generation in this example, as described in “Enabling M-Code
Generation” on page 4-80.

Examine the code of the tstoollog function to confirm that it takes two time
series as input arguments and resamples them using a uniform time vector
with the range 1 to 24 and intervals of 2.

Note The scope of the Record M-Code feature is restricted to recording
actions on the time series data itself. It does not generate code to import
data or reproduce time series plots.




Time Series Tools

Exporting Time Series to the Workspace

You can export individual time series, as well as time series collections, from
Time Series Tools to the MATLAB workspace. You can also export time series
to a Microsoft Excel worksheet or a MAT-file.

In this portion of the example, you will export the time series intersection1
as a variable to the MATLAB workspace. This time series differs from

the original data you imported into Time Series Tools because it has been
resampled, as described in “Resampling Time Series” on page 4-89.

1 Click the interesectionl node in the Time Series Session tree to select it.

2 Select File > Export > To Workspace. The variable intersectioni is
now listed in the MATLAB workspace.

Note Ifthe MATLAB workspace is hidden, select Desktop > Workspace
from the MATLAB window to display it.

4-95



4 Tine Series Analysis

4-96



A

attributes of time series 4-69
autocorrelation of time series 4-61

Basic Fitting 3-10
Basic Fitting dialog box
usage example 3-12

C

condition
data 3-13
confidence bounds 3-34
correlation analysis 3-2
correlation coefficients 3-5
correlation plots 4-60
interpreting 4-63
covariance 3-2
cross-correlation of time series 4-61 4-64
curve fitting. See data fitting
Curve Fitting Toolbox
for regression analysis 3-8
customizing time series plots 4-54

D

Data
badly conditioned 3-13
center and scale 3-13
data analysis
plotting data 1-3
data brushing
3-D plots 2-9
defined 2-4
multiple plots 2-9
techniques for 2-6
data cursor mode
update function example 2-25

data filtering. See filtering
data fitting 3-1
confidence bounds 3-34
example using functions 3-30
functions 3-23
multiple regression 3-29
nonpolynomial 3-27
polynomial 3-23
residuals 3-8
data linking
broken links 2-23
controls for 2-21
defined 2-13
reasons for using 2-14
data statistics. See statistics
Data Statistics dialog box 1-25
generating an M-file 1-32 3-21
saving statistics 1-31
usage example 1-25
datatips
example of customizing 2-25
descriptive statistics 1-22
detrending data 1-17
in Time Series Tools 4-78
difference equations 1-11
discrete filter 1-13

editing time series 4-69
events in time series 4-69
exploratory data analysis 2-2
exporting data

from MATLAB 1-2

from Time Series Tools 4-46

F

filter function 1-11
filtering

Index-1



Index

detrending data 1-17 M
difference equations 1-11 M-code from Time Series Tools 4-45
discrete filter 1-13 maximum 1-22
filter function 1-11 mean 1-22
in Time Series Tools 4-78 median 1-22
moving average 1-12 methods
finite differences 1-21 for timeseries object 4-31
functions for tscollection object 4-39
for data fitting 3-23 minimum 1-22
for data statistics 1-22 missing data

in calculations 1-6
G in time series 4-51
interpolating 1-6
removing 1-6
removing in Time Series Tools 4-78

goodness of fit 3-8

H representing by NaNs 1-6
histogram 4-59 modfe 1-22
used to select data 4-59 moving-average filter 1-12

multiple regression 3-29

|
. . N
importing data
into MATLAB 1-2 NaNs
into Time Series Tools 4-46 in calculations 1-6
interactive data exploration 2-2 removing from data 1-7
interpolating missing data 1-8 nonpolynomial fit 3-27
define method for time series 4-72
in Time Series Tools 4-78 (o]

i function 1-7 . . . .
tsnan function objects for time series analysis 4-3

outliers
L removing 1-9

linear regression 3-1
linked plots P
behavior of 2-16
information bar 2-14
working with 2-13
linking versus refreshing graphs 2-19
load function 1-3

periodogram 4-57

filtering data from 4-58
plot function 1-4
plotting data

in MATLAB 1-3

Index-2



Index

in Time Series Tools 4-52
polyfit function 3-23
polynomial regression 3-23
polyval function 3-23
properties

of timeseries object 4-24

of tscollection object 4-37
Property Editor

in Time Series Tools 4-54

Q

quality codes for time series data 4-73

range 1-22
refreshing versus linking graphs 2-19
regression 3-1
multiple 3-29
nonpolynomial 3-27
polynomial 3-23
removing
missing data 1-7
NaNs 1-7
outliers 1-9
resampling
in Time Series Tools 4-78
tscollection object 4-15
residuals 3-8

S

Simulink logged signals 4-46
spectral plot 4-57

filtering data from 4-58
standard deviation 1-22
statistics

formatting on plots 1-29

functions 1-22

in Time Series Tools 4-78

MATLAB Data Statistics 1-25
removing NaNs 1-7

removing outliers 1-9
showing on plots 1-26

T

time plot 4-56

time series 4-2

time series analysis
autocorrelation 4-61
cross-correlation 4-61 4-64
example using methods 4-6

example using Time Series Tools 4-79

methods 4-3

multivariate data 4-49

using Time Series Tools 4-41
Time Series Tools

customizing plots 4-54

define time series units 4-69

defining data quality 4-73

defining events 4-75

defining interpolation method 4-72

detrending data 4-78

editing data 4-69

filtering data 4-78

generating M-code 4-45

getting help 4-42

Import Wizard 4-48

importing data 4-46

interpolating data 4-78

opening 4-41

plot Property Editor 4-54

plotting data 4-52

removing missing data 4-78

resampling data 4-78

selecting data 4-66

transforming data algebraically 4-78

usage example 4-79
viewing statistics 4-78

Index-3



Index

window 4-43 methods 4-39

workflow 4-44 properties 4-37
time vector

format 4-22 U

uniform 4-71
timeseries object

constructor 4-23

creating 4-21 \V4

definition of data sample 4-4

methods 4-31

properties 4-24

uniform time vector 4-71

variance 1-22
visual data analysis 2-2

tools
MATLAB Basic Fitting 3-10 wW
MATLAB Data Statistics 1-25 workflow
Time Series Tools 4-41 in Time Series Tools 4-44

transfer-function filter 1-13
tscollection object
constructor 4-35 X
creating 4-35 XY plot 4-64

Index-4



	toc
	Data Processing
	Importing and Exporting Data
	Plotting Data
	Introduction
	Example: Loading and Plotting Data
	Loading the Data
	Plotting the Data


	Missing Data
	Representing Missing Data Values
	Calculating with NaNs
	Removing NaNs from Data
	Interpolating Missing Data

	Inconsistent Data
	Filtering Data
	Introduction
	Filter Function
	Example: Moving Average Filter
	Example: Discrete Filter

	Detrending Data
	Introduction
	Example: Removing Linear Trends from Data
	Loading and Plotting Data
	Detrending Data and Plotting Results


	Differencing Data
	Descriptive Statistics
	Functions for Calculating Descriptive Statistics
	Example 1 — Calculating Maximum, Mean, and Standard Deviation
	Example 2 — Subtracting the Mean

	Example: Using MATLAB Data Statistics
	Calculating and Plotting Descriptive Statistics
	Formatting Data Statistics on Plots
	Saving Statistics to the MATLAB Workspace
	Generating an M-file



	Interactive Data Exploration
	What Is Interactive Data Exploration?
	Interacting with MATLAB Data Graphs
	Understanding Data Using Graphic Presentations


	Marking Up Graphs with Data Brushing
	What Is Data Brushing?
	How to Brush Data
	Effects of Brushing on Data
	Brushed 3-D Plots
	Brushed Multiple Plots

	Other Data Brushing Aspects

	Making Graphs Responsive with Data Linking
	What Is Data Linking?
	Why Use Linked Plots?
	How to Link Plots
	How Linked Plots Behave
	Linking vs. Refreshing Plots
	Using Linked Plot Controls
	The Data Source Button
	The Edit Button
	When Data Links Fail


	Interacting with Graphed Data
	Data Brushing with the Variable Editor
	Using Datatips to Explore Graphs
	Example — Visually Exploring Demographic Statistics
	The Datatip Text Update Function
	Preparing, Plotting, and Annotating the Data
	Explore the Graph with the Custom Data Cursor
	Plot and Link a Histogram of a Related Variable
	Explore the Linked Graphs with Data Brushing
	Plot the Observations on a Linked Map



	Regression Analysis
	Linear Correlation
	Introduction
	Covariance
	Correlation Coefficients

	Linear Regression
	Introduction
	Residuals and Goodness of Fit
	Fitting Data with Curve Fitting Toolbox Functions

	Interactive Fitting
	The Basic Fitting GUI
	Preparing for Basic Fitting
	Opening the Basic Fitting GUI
	Example: Using Basic Fitting GUI
	Loading and Plotting Data
	Fitting Data
	Viewing and Saving Fit Parameters
	Interpolating and Extrapolating Values
	Generating an M-file


	Programmatic Fitting
	MATLAB Functions for Polynomial Models
	Linear Model with Nonpolynomial Terms
	Multiple Regression
	Example: Programmatic Fitting
	Calculating Correlation Coefficients
	Fitting a Polynomial to the Data
	Plot and Calculate Confidence Bounds



	Time Series Analysis
	Introduction
	Time Series Objects
	Introduction
	Time Series Data Sample
	Example: Time Series Objects and Methods
	Creating Time Series Objects
	Viewing Time Series Objects
	Modifying Time Series Units and Interpolation Method
	Defining Events
	Creating Time Series Collection Objects
	Resampling a Time Series Collection Object
	Adding a Data Sample to a Time Series Collection Object
	Removing and Interpolating Missing Data
	Removing a Time Series from a Time Series Collection
	Changing a Numerical Time Vector to Date Strings
	Plotting Time Series Collection Members

	Time Series Constructor
	Time Vector Format
	Time Series Constructor Syntax
	Time Series Properties

	Time Series Methods
	General Methods
	Data and Time Manipulation Methods
	Event Methods
	Arithmetic Operation Methods
	Statistical Methods

	Time Series Collection Constructor
	Introduction
	Time Series Collection Constructor Syntax
	Time Series Collection Properties

	Time Series Collection Methods
	General Time Series Collection Methods
	Data and Time Manipulation Methods


	Time Series Tools
	Introduction
	Opening Time Series Tools
	Getting Help
	Time Series Tools Window
	Time Series Tools Workflow
	Generating Reusable M-Code

	Importing and Exporting Data
	Types of Data You Can Import
	How to Import Data
	Changes to Data Representation During Import
	Importing Multivariate Data
	Importing Data with Missing Values
	Exporting Data from Time Series Tools

	Plotting Time Series
	Types of Plots in Time Series Tools
	Creating a Plot
	Customizing Line and Marker Styles
	Editing Plot Appearance
	Time Plots
	Spectral Plots
	Histograms
	Correlation Plots
	XY Plots

	Selecting Data for Analysis
	Selecting Data Using Rules
	Selecting Data Graphically
	Excluding Data from Analysis

	Editing Data, Time, Attributes, and Events
	Displaying the Data Table
	Editing Data and Time
	Defining Data Attributes
	Assigning Quality Codes to Data
	Defining Events

	Processing and Manipulating Time Series
	Example: Time Series Tools
	Loading Data into the MATLAB Workspace
	Starting Time Series Tools
	Enabling M-Code Generation
	Importing Data into Time Series Tools
	Creating a Time Plot
	Resampling Time Series
	Comparing Data on an XY Plot
	Viewing Generated M-Code
	Exporting Time Series to the Workspace




	tables
	Statistics Function Summary
	Polynomial Fit Functions
	tsc1 Data from 2.0 to 3.5 Hours
	New tsc1 Data from 2.0 to 3.5 Hours
	Time Series Syntax Descriptions
	Time Series Property Descriptions
	Methods for Querying Properties
	Methods for Manipulating Data and Time
	Methods That Define and Use Events
	Methods to Arithmetically Combine Time Series
	Methods for Calculating Descriptive Statistics
	Time Series Collection Syntax Descriptions
	Time Series Collection Property Descriptions
	Methods for Querying Properties
	Methods for Manipulating Data and Time
	Syntax for Loading Data from the MATLAB Workspace
	Time Plot Commands
	Data Analysis Commands


